HOI: A Python toolbox for high-performance estimation of Higher-Order Interactions from multivariate data

Python Submitted 24 September 2024Published 12 November 2024
Review

Editor: @jbytecode (all papers)
Reviewers: @pitmonticone (all reviews), @ClaudMor (all reviews)

Authors

Matteo Neri (0009-0007-0998-552X), Dishie Vinchhi, Christian Ferreyra, Thomas Robiglio, Onur Ates, Marlis Ontivero-Ortega (0000-0003-0084-8274), Andrea Brovelli (0000-0002-5342-1330), Daniele Marinazzo (0000-0002-9803-0122), Etienne Combrisson (0000-0002-7362-3247)

Citation

Neri et al., (2024). HOI: A Python toolbox for high-performance estimation of Higher-Order Interactions from multivariate data. Journal of Open Source Software, 9(103), 7360, https://doi.org/10.21105/joss.07360

@article{Neri2024, doi = {10.21105/joss.07360}, url = {https://doi.org/10.21105/joss.07360}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {103}, pages = {7360}, author = {Matteo Neri and Dishie Vinchhi and Christian Ferreyra and Thomas Robiglio and Onur Ates and Marlis Ontivero-Ortega and Andrea Brovelli and Daniele Marinazzo and Etienne Combrisson}, title = {HOI: A Python toolbox for high-performance estimation of Higher-Order Interactions from multivariate data}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

python higher-order interactions CPU/GPU information theory

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066