PeakPerformance - A tool for Bayesian inference-based fitting of LC-MS/MS peaks

Python Submitted 21 August 2024Published 13 December 2024
Review

Editor: @csoneson (all papers)
Reviewers: @Adafede (all reviews), @lazear (all reviews)

Authors

Jochen Nießer (0000-0001-5397-0682), Michael Osthege (0000-0002-2734-7624), Eric von Lieres (0000-0002-0309-8408), Wolfgang Wiechert (0000-0001-8501-0694), Stephan Noack (0000-0001-9784-3626)

Citation

Nießer et al., (2024). PeakPerformance - A tool for Bayesian inference-based fitting of LC-MS/MS peaks. Journal of Open Source Software, 9(104), 7313, https://doi.org/10.21105/joss.07313

@article{Nießer2024, doi = {10.21105/joss.07313}, url = {https://doi.org/10.21105/joss.07313}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {104}, pages = {7313}, author = {Jochen Nießer and Michael Osthege and Eric von Lieres and Wolfgang Wiechert and Stephan Noack}, title = {PeakPerformance - A tool for Bayesian inference-based fitting of LC-MS/MS peaks}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Peak fitting Bayesian inference Chromatography LC-MS/MS Uncertainty quantification

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066