BART-Survival: A Bayesian machine learning approach to survival analyses in Python

Python Jupyter Notebook Submitted 12 August 2024Published 28 January 2025
Review

Editor: @mahfuz05062 (all papers)
Reviewers: @turgeonmaxime (all reviews), @rich2355 (all reviews)

Authors

Jacob Tiegs (0009-0001-6265-913X), Julia Raykin (0009-0006-1840-6991), Ilia Rochlin (0000-0001-7680-6965)

Citation

Tiegs et al., (2025). BART-Survival: A Bayesian machine learning approach to survival analyses in Python. Journal of Open Source Software, 10(105), 7213, https://doi.org/10.21105/joss.07213

@article{Tiegs2025, doi = {10.21105/joss.07213}, url = {https://doi.org/10.21105/joss.07213}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {105}, pages = {7213}, author = {Jacob Tiegs and Julia Raykin and Ilia Rochlin}, title = {BART-Survival: A Bayesian machine learning approach to survival analyses in Python}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Bayesian Machine Learning Survival Time to Event

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066