MACE: a Machine-learning Approach to Chemistry Emulation

Jupyter Notebook Python Submitted 10 June 2024Published 04 April 2025
Review

Editor: @JBorrow (all papers)
Reviewers: @richings (all reviews), @trappitsch (all reviews)

Authors

Silke Maes (0000-0003-4159-9964), Frederik De Ceuster (0000-0001-5887-8498), Marie Van de Sande (0000-0001-9298-6265), Leen Decin (0000-0002-5342-8612)

Citation

Maes et al., (2025). MACE: a Machine-learning Approach to Chemistry Emulation. Journal of Open Source Software, 10(108), 7148, https://doi.org/10.21105/joss.07148

@article{Maes2025, doi = {10.21105/joss.07148}, url = {https://doi.org/10.21105/joss.07148}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {108}, pages = {7148}, author = {Silke Maes and Frederik De Ceuster and Marie Van de Sande and Leen Decin}, title = {MACE: a Machine-learning Approach to Chemistry Emulation}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

astrophysics chemistry surrogate model stellar winds

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066