ProbNumDiffEq.jl: Probabilistic Numerical Solvers for Ordinary Differential Equations in Julia

Julia Just Submitted 19 July 2024Published 30 September 2024
Review

Editor: @jbytecode (all papers)
Reviewers: @PieterjanRobbe (all reviews), @ranocha (all reviews)

Authors

Nathanael Bosch (0000-0003-0139-4622)

Citation

Bosch, N., (2024). ProbNumDiffEq.jl: Probabilistic Numerical Solvers for Ordinary Differential Equations in Julia. Journal of Open Source Software, 9(101), 7048, https://doi.org/10.21105/joss.07048

@article{Bosch2024, doi = {10.21105/joss.07048}, url = {https://doi.org/10.21105/joss.07048}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {101}, pages = {7048}, author = {Nathanael Bosch}, title = {ProbNumDiffEq.jl: Probabilistic Numerical Solvers for Ordinary Differential Equations in Julia}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

probabilistic numerics differential equations Bayesian filtering and smoothing simulation

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066