HoverFast: an accurate, high-throughput, clinically deployable nuclear segmentation tool for brightfield digital pathology images

Python Submitted 24 May 2024Published 26 September 2024
Review

Editor: @sappelhoff (all papers)
Reviewers: @PingjunChen (all reviews), @NetoPedro (all reviews)

Authors

Petros Liakopoulos (0009-0005-2015-6795), Julien Massonnet (0009-0004-9515-6100), Jonatan Bonjour (0009-0006-8165-6897), Medya Tekes Mizrakli, Simon Graham, Michel A. Cuendet, Amanda H. Seipel, Olivier Michielin, Doron Merkler, Andrew Janowczyk

Citation

Liakopoulos et al., (2024). HoverFast: an accurate, high-throughput, clinically deployable nuclear segmentation tool for brightfield digital pathology images. Journal of Open Source Software, 9(101), 7022, https://doi.org/10.21105/joss.07022

@article{Liakopoulos2024, doi = {10.21105/joss.07022}, url = {https://doi.org/10.21105/joss.07022}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {101}, pages = {7022}, author = {Petros Liakopoulos and Julien Massonnet and Jonatan Bonjour and Medya Tekes Mizrakli and Simon Graham and Michel A. Cuendet and Amanda H. Seipel and Olivier Michielin and Doron Merkler and Andrew Janowczyk}, title = {HoverFast: an accurate, high-throughput, clinically deployable nuclear segmentation tool for brightfield digital pathology images}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

digital pathology deep learning biomedical imaging nuclear segmentation

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066