AutoRA: Automated Research Assistant for Closed-Loop Empirical Research

Submitted 22 May 2024Published 05 December 2024
Review

Editor: @jbytecode (all papers)
Reviewers: @seandamiandevine (all reviews), @szorowi1 (all reviews)

Authors

Sebastian Musslick (0000-0002-8896-639X), Benjamin Andrew, Chad C. Williams (0000-0003-2016-5614), Joshua T. s. Hewson, Sida Li (0009-0009-7849-1923), Ioana Marinescu, Marina Dubova (0000-0001-5264-0489), George T. Dang (0009-0008-1566-8245), Younes Strittmatter (0000-0002-3414-2838), John G. Holland (0000-0001-6845-8657)

Citation

Musslick et al., (2024). AutoRA: Automated Research Assistant for Closed-Loop Empirical Research. Journal of Open Source Software, 9(104), 6839, https://doi.org/10.21105/joss.06839

@article{Musslick2024, doi = {10.21105/joss.06839}, url = {https://doi.org/10.21105/joss.06839}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {104}, pages = {6839}, author = {Sebastian Musslick and Benjamin Andrew and Chad C. Williams and Joshua T. s. Hewson and Sida Li and Ioana Marinescu and Marina Dubova and George T. Dang and Younes Strittmatter and John G. Holland}, title = {AutoRA: Automated Research Assistant for Closed-Loop Empirical Research}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Python automated scientific discovery symbolic regression active learning closed-loop behavioral science

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066