BayesEoR: Bayesian 21-cm Power Spectrum Estimation from Interferometric Visibilities

Python Submitted 13 February 2024Published 18 November 2024
Review

Editor: @dfm (all papers)
Reviewers: @musoke (all reviews), @zonca (all reviews)

Authors

Peter H. Sims (0000-0002-2871-0413), Jacob Burba (0000-0002-8465-9341), Jonathan C. Pober (0000-0002-3492-0433)

Citation

Sims et al., (2024). BayesEoR: Bayesian 21-cm Power Spectrum Estimation from Interferometric Visibilities. Journal of Open Source Software, 9(103), 6667, https://doi.org/10.21105/joss.06667

@article{Sims2024, doi = {10.21105/joss.06667}, url = {https://doi.org/10.21105/joss.06667}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {103}, pages = {6667}, author = {Peter H. Sims and Jacob Burba and Jonathan C. Pober}, title = {BayesEoR: Bayesian 21-cm Power Spectrum Estimation from Interferometric Visibilities}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

radio astronomy interferometry GPU power spectrum Bayes Epoch of Reionization

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066