PyXAB - A Python Library for $\mathcal{X}$-Armed Bandit and Online Blackbox Optimization Algorithms

Python Submitted 04 October 2023Published 24 October 2024
Review

Editor: @drvinceknight (all papers)
Reviewers: @Otomisin (all reviews), @KBodolai (all reviews)

Authors

Wenjie Li[ (0000-0003-1872-4595), Haoze Li, Qifan Song, Jean Honorio

Citation

Li[ et al., (2024). PyXAB - A Python Library for $\mathcal{X}$-Armed Bandit and Online Blackbox Optimization Algorithms. Journal of Open Source Software, 9(102), 6507, https://doi.org/10.21105/joss.06507

@article{Li[2024, doi = {10.21105/joss.06507}, url = {https://doi.org/10.21105/joss.06507}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {102}, pages = {6507}, author = {Wenjie Li[ and Haoze Li and Qifan Song and Jean Honorio}, title = {PyXAB - A Python Library for $\mathcal{X}$-Armed Bandit and Online Blackbox Optimization Algorithms}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

$\mathcal{X}$-Armed Bandit Online Blackbox Optimization Lipschitz Bandit

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066