CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification

Julia Submitted 13 January 2024Published 06 May 2024
Review

Editor: @sappelhoff (all papers)
Reviewers: @matt-graham (all reviews), @Vaibhavdixit02 (all reviews), @nluetts (all reviews)

Authors

Oliver R. a. Dunbar (0000-0001-7374-0382), Melanie Bieli, Alfredo Garbuno-Iñigo (0000-0003-3279-619X), Michael Howland (0000-0002-2878-3874), Andre Nogueira de Souza (0000-0002-9906-7824), Laura Anne Mansfield (0000-0002-6285-6045), Gregory L. Wagner (0000-0001-5317-2445), N. Efrat-Henrici

Citation

Dunbar et al., (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97), 6372, https://doi.org/10.21105/joss.06372

@article{Dunbar2024, doi = {10.21105/joss.06372}, url = {https://doi.org/10.21105/joss.06372}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {97}, pages = {6372}, author = {Oliver R. a. Dunbar and Melanie Bieli and Alfredo Garbuno-Iñigo and Michael Howland and Andre Nogueira de Souza and Laura Anne Mansfield and Gregory L. Wagner and N. Efrat-Henrici}, title = {CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning optimization bayesian data assimilation

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066