PyProximal - scalable convex optimization in Python

Python Submitted 31 December 2023Published 13 March 2024
Review

Editor: @sappelhoff (all papers)
Reviewers: @nirum (all reviews), @ewu63 (all reviews)

Authors

Matteo Ravasi (0000-0003-0020-2721), Marcus Valtonen Örnhag (0000-0001-8687-227X), Nick Luiken (0000-0003-3307-1748), Olivier Leblanc (0000-0003-3641-1875), Eneko Uruñuela (0000-0001-6849-9088)

Citation

Ravasi et al., (2024). PyProximal - scalable convex optimization in Python. Journal of Open Source Software, 9(95), 6326, https://doi.org/10.21105/joss.06326

@article{Ravasi2024, doi = {10.21105/joss.06326}, url = {https://doi.org/10.21105/joss.06326}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {95}, pages = {6326}, author = {Matteo Ravasi and Marcus Valtonen Örnhag and Nick Luiken and Olivier Leblanc and Eneko Uruñuela}, title = {PyProximal - scalable convex optimization in Python}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

convex optimization proximal

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066