fABBA: A Python library for the fast symbolic approximation of time series

Python Cython Submitted 06 December 2023Published 30 March 2024
Review

Editor: @lrnv (all papers)
Reviewers: @Karangupta1994 (all reviews), @allie-tatarian (all reviews)

Authors

Xinye Chen (0000-0003-1778-393X), Stefan Güttel (0000-0003-1494-4478)

Citation

Chen et al., (2024). fABBA: A Python library for the fast symbolic approximation of time series. Journal of Open Source Software, 9(95), 6294, https://doi.org/10.21105/joss.06294

@article{Chen2024, doi = {10.21105/joss.06294}, url = {https://doi.org/10.21105/joss.06294}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {95}, pages = {6294}, author = {Xinye Chen and Stefan Güttel}, title = {fABBA: A Python library for the fast symbolic approximation of time series}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

time series dimensionality reduction symbolic representation data science

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066