LabelProp: A semi-automatic segmentation tool for 3D medical images

Python PowerShell Submitted 16 January 2024Published 30 May 2025
Review

Editor: @likeajumprope (all papers)
Reviewers: @WangKehan573 (all reviews), @animikhaich (all reviews), @tensorsofthewall (all reviews)

Authors

Nathan Decaux (0000-0002-6911-6373), Pierre-Henri Conze (0000-0003-2214-3654), Juliette Ropars (0000-0001-7467-759X), Xinyan He, Frances T. Sheehan, Christelle Pons (0000-0003-3924-6035), Douraied Ben Salem (0000-0001-5532-2208), Sylvain Brochard (0000-0002-4950-1696), François Rousseau (0000-0001-9837-7487)

Citation

Decaux et al., (2025). LabelProp: A semi-automatic segmentation tool for 3D medical images. Journal of Open Source Software, 10(109), 6284, https://doi.org/10.21105/joss.06284

@article{Decaux2025, doi = {10.21105/joss.06284}, url = {https://doi.org/10.21105/joss.06284}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {109}, pages = {6284}, author = {Nathan Decaux and Pierre-Henri Conze and Juliette Ropars and Xinyan He and Frances T. Sheehan and Christelle Pons and Douraied Ben Salem and Sylvain Brochard and François Rousseau}, title = {LabelProp: A semi-automatic segmentation tool for 3D medical images}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

segmentation deep learning medical images musculoskeletal

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066