autoStreamTree: Genomic variant data fitted to geospatial networks

Python Submitted 06 November 2023Published 27 March 2024
Review

Editor: @crvernon (all papers)
Reviewers: @xin-huang (all reviews), @abhishektiwari (all reviews)

Authors

Tyler K. Chafin (0000-0001-8687-5905), Steven M. Mussmann (0000-0002-5237-5088), Marlis R. Douglas (0000-0001-6234-3939), Michael E. Douglas (0000-0001-9670-7825)

Citation

Chafin et al., (2024). autoStreamTree: Genomic variant data fitted to geospatial networks. Journal of Open Source Software, 9(95), 6160, https://doi.org/10.21105/joss.06160

@article{Chafin2024, doi = {10.21105/joss.06160}, url = {https://doi.org/10.21105/joss.06160}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {95}, pages = {6160}, author = {Tyler K. Chafin and Steven M. Mussmann and Marlis R. Douglas and Michael E. Douglas}, title = {autoStreamTree: Genomic variant data fitted to geospatial networks}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

riverscape genomics geo-genetic patterns population genetics

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066