scida: scalable analysis for scientific big data

Python Submitted 09 October 2023Published 28 February 2024
Review

Editor: @mbobra (all papers)
Reviewers: @egaraldi (all reviews), @kyleaoman (all reviews)

Authors

Chris Byrohl (0000-0002-0885-8090), Dylan Nelson (0000-0001-8421-5890)

Citation

Byrohl et al., (2024). scida: scalable analysis for scientific big data. Journal of Open Source Software, 9(94), 6064, https://doi.org/10.21105/joss.06064

@article{Byrohl2024, doi = {10.21105/joss.06064}, url = {https://doi.org/10.21105/joss.06064}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {94}, pages = {6064}, author = {Chris Byrohl and Dylan Nelson}, title = {scida: scalable analysis for scientific big data}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

simulations i/o point clouds

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066