JetNet: A Python package for accessing open datasets and benchmarking machine learning methods in high energy physics

Python Jupyter Notebook Submitted 29 August 2023Published 30 October 2023
Review

Editor: @matthewfeickert (all papers)
Reviewers: @smsharma (all reviews), @saforem2 (all reviews)

Authors

Raghav Kansal (0000-0003-2445-1060), Carlos Pareja (0000-0002-9022-2349), Zichun Hao (0000-0002-5624-4907), Javier Duarte (0000-0002-5076-7096)

Citation

Kansal et al., (2023). JetNet: A Python package for accessing open datasets and benchmarking machine learning methods in high energy physics. Journal of Open Source Software, 8(90), 5789, https://doi.org/10.21105/joss.05789

@article{Kansal2023, doi = {10.21105/joss.05789}, url = {https://doi.org/10.21105/joss.05789}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {90}, pages = {5789}, author = {Raghav Kansal and Carlos Pareja and Zichun Hao and Javier Duarte}, title = {JetNet: A Python package for accessing open datasets and benchmarking machine learning methods in high energy physics}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

PyTorch high energy physics machine learning jets

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066