einprot: flexible, easy-to-use, reproducible workflows for statistical analysis of quantitative proteomics data

R Submitted 05 August 2023Published 11 September 2023
Review

Editor: @fboehm (all papers)
Reviewers: @AnthonyOfSeattle (all reviews), @ByrumLab (all reviews)

Authors

Charlotte Soneson (0000-0003-3833-2169), Vytautas Iesmantavicius (0000-0002-2512-9957), Daniel Hess (0000-0002-1642-5404), Michael B. Stadler (0000-0002-2269-4934), Jan Seebacher (0000-0002-7858-2720)

Citation

Soneson et al., (2023). einprot: flexible, easy-to-use, reproducible workflows for statistical analysis of quantitative proteomics data. Journal of Open Source Software, 8(89), 5750, https://doi.org/10.21105/joss.05750

@article{Soneson2023, doi = {10.21105/joss.05750}, url = {https://doi.org/10.21105/joss.05750}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {89}, pages = {5750}, author = {Charlotte Soneson and Vytautas Iesmantavicius and Daniel Hess and Michael B. Stadler and Jan Seebacher}, title = {einprot: flexible, easy-to-use, reproducible workflows for statistical analysis of quantitative proteomics data}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

proteomics

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066