BayesO: A Bayesian optimization framework in Python

Python Submitted 02 January 2023Published 09 October 2023
Review

Editor: @drvinceknight (all papers)
Reviewers: @salrm8 (all reviews), @thomaspinder (all reviews)

Authors

Jungtaek Kim (0000-0002-1905-1399), Seungjin Choi (0000-0002-7873-4616)

Citation

Kim et al., (2023). BayesO: A Bayesian optimization framework in Python. Journal of Open Source Software, 8(90), 5320, https://doi.org/10.21105/joss.05320

@article{Kim2023, doi = {10.21105/joss.05320}, url = {https://doi.org/10.21105/joss.05320}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {90}, pages = {5320}, author = {Jungtaek Kim and Seungjin Choi}, title = {BayesO: A Bayesian optimization framework in Python}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Bayesian optimization global optimization black-box optimization optimization

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066