Volume Segmantics: A Python Package for Semantic Segmentation of Volumetric Data Using Pre-trained PyTorch Deep Learning Models

Python Submitted 03 August 2022Published 09 October 2022
Review

Editor: @osorensen (all papers)
Reviewers: @jingpengw (all reviews), @estenhl (all reviews)

Authors

Oliver N. f. King (0000-0002-6152-7207), Dimitrios Bellos (0000-0002-8015-3191), Mark Basham (0000-0002-8438-1415)

Citation

King et al., (2022). Volume Segmantics: A Python Package for Semantic Segmentation of Volumetric Data Using Pre-trained PyTorch Deep Learning Models. Journal of Open Source Software, 7(78), 4691, https://doi.org/10.21105/joss.04691

@article{King2022, doi = {10.21105/joss.04691}, url = {https://doi.org/10.21105/joss.04691}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {78}, pages = {4691}, author = {Oliver N. f. King and Dimitrios Bellos and Mark Basham}, title = {Volume Segmantics: A Python Package for Semantic Segmentation of Volumetric Data Using Pre-trained PyTorch Deep Learning Models}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

segmentation deep learning volumetric images pre-trained

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066