PoUnce: A framework for automatized uncertainty quantification simulations on high-performance clusters

Python Submitted 02 August 2022Published 15 February 2023
Review

Editor: @Nikoleta-v3 (all papers)
Reviewers: @georgiastuart (all reviews), @salrm8 (all reviews)

Authors

Jakob Duerrwaechter (0000-0001-8961-5340), Thomas Kuhn, Fabian Meyer, Andrea Beck, Claus-Dieter Munz

Citation

Duerrwaechter et al., (2023). PoUnce: A framework for automatized uncertainty quantification simulations on high-performance clusters. Journal of Open Source Software, 8(82), 4683, https://doi.org/10.21105/joss.04683

@article{Duerrwaechter2023, doi = {10.21105/joss.04683}, url = {https://doi.org/10.21105/joss.04683}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {82}, pages = {4683}, author = {Jakob Duerrwaechter and Thomas Kuhn and Fabian Meyer and Andrea Beck and Claus-Dieter Munz}, title = {PoUnce: A framework for automatized uncertainty quantification simulations on high-performance clusters}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Uncertainty quantification High performance computing Mulitlevel Monte Carlo Multifidelity Monte Carlo

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066