Black-it: A Ready-to-Use and Easy-to-Extend Calibration Kit for Agent-based Models

Python Submitted 01 July 2022Published 03 November 2022
Review

Editor: @drvinceknight (all papers)
Reviewers: @Athene-ai (all reviews), @aseyq (all reviews)

Authors

Marco Benedetti, Gennaro Catapano, Francesco De Sclavis, Marco Favorito (0000-0001-9566-3576), Aldo Glielmo (0000-0002-4737-2878), Davide Magnanimi (0000-0002-6560-8047), Antonio Muci

Citation

Benedetti et al., (2022). Black-it: A Ready-to-Use and Easy-to-Extend Calibration Kit for Agent-based Models. Journal of Open Source Software, 7(79), 4622, https://doi.org/10.21105/joss.04622

@article{Benedetti2022, doi = {10.21105/joss.04622}, url = {https://doi.org/10.21105/joss.04622}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {79}, pages = {4622}, author = {Marco Benedetti and Gennaro Catapano and Francesco De Sclavis and Marco Favorito and Aldo Glielmo and Davide Magnanimi and Antonio Muci}, title = {Black-it: A Ready-to-Use and Easy-to-Extend Calibration Kit for Agent-based Models}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

agent-based models calibration benchmarking computational economics

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066