GRAPL: A computational library for nonparametric structural causal modelling, analysis and inference

Python Submitted 29 March 2022Published 05 August 2022
Review

Editor: @Nikoleta-v3 (all papers)
Reviewers: @Athene-ai (all reviews), @fAndreuzzi (all reviews)

Authors

Max A. Little (0000-0002-1507-3822)

Citation

Little, M. A., (2022). GRAPL: A computational library for nonparametric structural causal modelling, analysis and inference. Journal of Open Source Software, 7(76), 4534, https://doi.org/10.21105/joss.04534

@article{Little2022, doi = {10.21105/joss.04534}, url = {https://doi.org/10.21105/joss.04534}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {76}, pages = {4534}, author = {Max A. Little}, title = {GRAPL: A computational library for nonparametric structural causal modelling, analysis and inference}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

structural causal models causal inference DAGs ADMGs

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066