haldensify: Highly adaptive lasso conditional density estimation in R

R Submitted 18 May 2022Published 23 September 2022
Review

Editor: @majensen (all papers)
Reviewers: @turgeonmaxime (all reviews), @adibender (all reviews)

Authors

Nima S. Hejazi (0000-0002-7127-2789), Mark J. van der Laan (0000-0002-1019-8343), David Benkeser (0000-0002-1019-8343)

Citation

Hejazi et al., (2022). haldensify: Highly adaptive lasso conditional density estimation in R. Journal of Open Source Software, 7(77), 4522, https://doi.org/10.21105/joss.04522

@article{Hejazi2022, doi = {10.21105/joss.04522}, url = {https://doi.org/10.21105/joss.04522}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {77}, pages = {4522}, author = {Nima S. Hejazi and Mark J. van der Laan and David Benkeser}, title = {`haldensify`: Highly adaptive lasso conditional density estimation in `R`}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning causal inference conditional density estimation generalized propensity score inverse probability weighting semiparametric inference

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066