DIANNA: Deep Insight And Neural Network Analysis

Python Jupyter Notebook Submitted 22 March 2022Published 15 December 2022
Review

Editor: @diehlpk (all papers)
Reviewers: @Athene-ai (all reviews), @sara-02 (all reviews)

Authors

Elena Ranguelova (0000-0002-9834-1756), Christiaan Meijer (0000-0002-5529-5761), Leon Oostrum (0000-0001-8724-8372), Yang Liu (0000-0002-1966-8460), Patrick Bos (0000-0002-6033-960X), Giulia Crocioni (0000-0002-0823-0121), Matthieu Laneuville (0000-0001-6022-0046), Bryan Cardenas Guevara (0000-0001-9793-910X), Rena Bakhshi (0000-0002-2932-3028), Damian Podareanu (0000-0002-4207-8725)

Citation

Ranguelova et al., (2022). DIANNA: Deep Insight And Neural Network Analysis. Journal of Open Source Software, 7(80), 4493, https://doi.org/10.21105/joss.04493

@article{Ranguelova2022, doi = {10.21105/joss.04493}, url = {https://doi.org/10.21105/joss.04493}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {80}, pages = {4493}, author = {Elena Ranguelova and Christiaan Meijer and Leon Oostrum and Yang Liu and Patrick Bos and Giulia Crocioni and Matthieu Laneuville and Bryan Cardenas Guevara and Rena Bakhshi and Damian Podareanu}, title = {DIANNA: Deep Insight And Neural Network Analysis}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

explainable AI Deep Neural Networks ONNX benchmark datasets

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066