NiaARM: A minimalistic framework for Numerical Association Rule Mining

Python Submitted 27 April 2022Published 29 September 2022
Review

Editor: @fabian-s (all papers)
Reviewers: @diegomcarvalho (all reviews), @fabian-s (all reviews)

Authors

Žiga Stupan (0000-0001-9847-7306), Iztok Fister (0000-0002-6418-1272)

Citation

Stupan et al., (2022). NiaARM: A minimalistic framework for Numerical Association Rule Mining. Journal of Open Source Software, 7(77), 4448, https://doi.org/10.21105/joss.04448

@article{Stupan2022, doi = {10.21105/joss.04448}, url = {https://doi.org/10.21105/joss.04448}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {77}, pages = {4448}, author = {Žiga Stupan and Iztok Fister}, title = {NiaARM: A minimalistic framework for Numerical Association Rule Mining}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

association rule mining data mining evolutionary algorithms numerical association rule mining visualization

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066