SGMCMCJax: a lightweight JAX library for stochastic gradient Markov chain Monte Carlo algorithms

Python Submitted 17 January 2022Published 18 April 2022
Review

Editor: @dfm (all papers)
Reviewers: @canyon289 (all reviews), @ColCarroll (all reviews)

Authors

Jeremie Coullon (0000-0002-7032-3425), Christopher Nemeth (0000-0002-9084-3866)

Citation

Coullon et al., (2022). SGMCMCJax: a lightweight JAX library for stochastic gradient Markov chain Monte Carlo algorithms. Journal of Open Source Software, 7(72), 4113, https://doi.org/10.21105/joss.04113

@article{Coullon2022, doi = {10.21105/joss.04113}, url = {https://doi.org/10.21105/joss.04113}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {72}, pages = {4113}, author = {Jeremie Coullon and Christopher Nemeth}, title = {SGMCMCJax: a lightweight JAX library for stochastic gradient Markov chain Monte Carlo algorithms}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

JAX MCMC SGMCMC Bayesian inference

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066