Frites: A Python package for functional connectivity analysis and group-level statistics of neurophysiological data

Python Submitted 21 September 2021Published 11 November 2022
Review

Editor: @meg-simula (all papers)
Reviewers: @madvn (all reviews), @travisbthomp (all reviews)

Authors

Etienne Combrisson (0000-0002-7362-3247), Ruggero Basanisi (0000-0003-4776-596X), Vinicius Lima Cordeiro (0000-0001-7115-9041), Robin A.a Ince (0000-0001-8427-0507), Andrea Brovelli (0000-0002-5342-1330)

Citation

Combrisson et al., (2022). Frites: A Python package for functional connectivity analysis and group-level statistics of neurophysiological data. Journal of Open Source Software, 7(79), 3842, https://doi.org/10.21105/joss.03842

@article{Combrisson2022, doi = {10.21105/joss.03842}, url = {https://doi.org/10.21105/joss.03842}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {79}, pages = {3842}, author = {Etienne Combrisson and Ruggero Basanisi and Vinicius Lima Cordeiro and Robin A.a Ince and Andrea Brovelli}, title = {Frites: A Python package for functional connectivity analysis and group-level statistics of neurophysiological data}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

python cognitive neuroscience computational neuroscience neuroinformatics neurophysiology information theory information-based measures statistics functional connectivity fixed-effect ffx random-effect rfx cluster-based statistics MEG EEG sEEG LFPs Granger causality

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066