TX$^2$: Transformer eXplainability and eXploration

Python Submitted 17 August 2021Published 21 December 2021
Review

Editor: @fabian-s (all papers)
Reviewers: @assenmacher-mat (all reviews), @deniederhut (all reviews)

Authors

Nathan Martindale (0000-0002-5036-5433), Scott L. Stewart (0000-0003-4320-5818)

Citation

Martindale et al., (2021). TX$^2$: Transformer eXplainability and eXploration. Journal of Open Source Software, 6(68), 3652, https://doi.org/10.21105/joss.03652

@article{Martindale2021, doi = {10.21105/joss.03652}, url = {https://doi.org/10.21105/joss.03652}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {68}, pages = {3652}, author = {Nathan Martindale and Scott L. Stewart}, title = {TX$^2$: Transformer eXplainability and eXploration}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

explainability natural language processing deep networks transformers

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066