PyGModels: A Python package for exploring Probabilistic Graphical Models with Graph Theoretical Structures

Python Submitted 03 February 2021Published 13 May 2021
Review

Editor: @dfm (all papers)
Reviewers: @eigenfoo (all reviews), @ankurankan (all reviews)

Authors

Doğu Kaan Eraslan (0000-0002-1552-8938)

Citation

Eraslan, D. K., (2021). PyGModels: A Python package for exploring Probabilistic Graphical Models with Graph Theoretical Structures. Journal of Open Source Software, 6(61), 3115, https://doi.org/10.21105/joss.03115

@article{Eraslan2021, doi = {10.21105/joss.03115}, url = {https://doi.org/10.21105/joss.03115}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {61}, pages = {3115}, author = {Doğu Kaan Eraslan}, title = {PyGModels: A Python package for exploring Probabilistic Graphical Models with Graph Theoretical Structures}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

probabilistic graphical models Bayesian statistics Probabilistic inference

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066