uravu: Making Bayesian modelling easy(er)

Python Submitted 20 May 2020Published 05 June 2020
Review

Editor: @dfm (all papers)
Reviewers: @ejhigson (all reviews), @joshspeagle (all reviews)

Authors

Andrew R. McCluskey (0000-0003-3381-5911), Tim Snow (0000-0001-7146-6885)

Citation

McCluskey et al., (2020). uravu: Making Bayesian modelling easy(er). Journal of Open Source Software, 5(50), 2214, https://doi.org/10.21105/joss.02214

@article{McCluskey2020, doi = {10.21105/joss.02214}, url = {https://doi.org/10.21105/joss.02214}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {50}, pages = {2214}, author = {Andrew R. McCluskey and Tim Snow}, title = {uravu: Making Bayesian modelling easy(er)}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Bayesian analysis evidence estimation nested sampling mcmc

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066