PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data

Python Submitted 11 February 2020Published 18 May 2020
Review

Editor: @terrytangyuan (all papers)
Reviewers: @sixpearls (all reviews), @dawbarton (all reviews)

Authors

Brian M. de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J. Nathan Kutz, Steven L. Brunton

Citation

de Silva et al., (2020). PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data. Journal of Open Source Software, 5(49), 2104, https://doi.org/10.21105/joss.02104

@article{de Silva2020, doi = {10.21105/joss.02104}, url = {https://doi.org/10.21105/joss.02104}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {49}, pages = {2104}, author = {Brian M. de Silva and Kathleen Champion and Markus Quade and Jean-Christophe Loiseau and J. Nathan Kutz and Steven L. Brunton}, title = {PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

dynamical systems sparse regression model discovery system identification machine learning

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066