rrcf: Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Python Submitted 04 March 2019Accepted 29 March 2019
Review

Editor: @VivianePons (all papers)
Reviewers: @vc1492a (all reviews), @justinshenk (all reviews)

Authors

Matthew Bartos (0000-0001-6421-222X), Abhiram Mullapudi (0000-0001-8141-3621), Sara Troutman (0000-0002-6809-7959)

Citation

Bartos et al., (2019). rrcf: Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams. Journal of Open Source Software, 4(35), 1336, https://doi.org/10.21105/joss.01336
Copy BibTeX entry »

Tags

outlier detection machine learning ensemble methods random forests

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066