Category Encoders: a scikit-learn-contrib package of transformers for encoding categorical data

Python Submitted 05 December 2017Published 22 January 2018
Review

Editor: @jakevdp (all papers)
Reviewers: @desilinguist (all reviews)

Authors

William D. McGinnis (0000-0002-3009-9465), Chapman Siu (0000-0002-2089-3796), Andre S (0000-0001-5104-0465), Hanyu Huang (0000-0001-8503-1014)

Citation

McGinnis et al., (2018). Category Encoders: a scikit-learn-contrib package of transformers for encoding categorical data. Journal of Open Source Software, 3(21), 501, https://doi.org/10.21105/joss.00501

@article{McGinnis2018, doi = {10.21105/joss.00501}, url = {https://doi.org/10.21105/joss.00501}, year = {2018}, publisher = {The Open Journal}, volume = {3}, number = {21}, pages = {501}, author = {William D. McGinnis and Chapman Siu and Andre S and Hanyu Huang}, title = {Category Encoders: a scikit-learn-contrib package of transformers for encoding categorical data}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning python sckit-learn

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066