BATMAN: Statistical analysis for expensive computer codes made easy

Python GLSL Submitted 29 November 2017Published 31 January 2018
Review

Editor: @katyhuff (all papers)
Reviewers: @mikeckennedy (all reviews)

Authors

Pamphile T. Roy (0000-0001-9816-1416), Sophie Ricci (0000-0002-4232-5626), Romain Dupuis, Robin Campet (0000-0002-4434-0854), Jean-Christophe Jouhaud, Cyril Fournier

Citation

Roy et al., (2018). BATMAN: Statistical analysis for expensive computer codes made easy. Journal of Open Source Software, 3(21), 493, https://doi.org/10.21105/joss.00493

@article{Roy2018, doi = {10.21105/joss.00493}, url = {https://doi.org/10.21105/joss.00493}, year = {2018}, publisher = {The Open Journal}, volume = {3}, number = {21}, pages = {493}, author = {Pamphile T. Roy and Sophie Ricci and Romain Dupuis and Robin Campet and Jean-Christophe Jouhaud and Cyril Fournier}, title = {BATMAN: Statistical analysis for expensive computer codes made easy}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Uncertainty Quantification Statistical Analysis Surrogate Model Design of Experiments Uncertainty Visualization

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066