Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies

Python Jupyter Notebook Submitted 23 November 2016Published 29 March 2017
Review

Editor: @katyhuff (all papers)
Reviewers: @nicoguaro (all reviews)

Authors

Pranay Seshadri (0000-0002-7351-012X), Geoffrey Parks (0000-0001-8188-5047)

Citation

Seshadri et al, (2017), Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies, Journal of Open Source Software, 2(11), 166, doi:10.21105/joss.00166

@article{Seshadri2017, doi = {10.21105/joss.00166}, url = {https://doi.org/10.21105/joss.00166}, year = {2017}, publisher = {The Open Journal}, volume = {2}, number = {11}, pages = {166}, author = {Pranay Seshadri and Geoffrey Parks}, title = {Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

effective quadrature subsampling tensor and sparse grids uncertainty quantification surrogate modelling polynomial interpolation and approximation

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066