Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies

Python Jupyter Notebook Submitted 23 November 2016Published 29 March 2017

Editor: @katyhuff (all papers)
Reviewers: @nicoguaro (all reviews)


Pranay Seshadri (0000-0002-7351-012X), Geoffrey Parks (0000-0001-8188-5047)


Seshadri et al, (2017), Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies, Journal of Open Source Software, 2(11), 166, doi:10.21105/joss.00166

@article{Seshadri2017, doi = {10.21105/joss.00166}, url = {https://doi.org/10.21105/joss.00166}, year = {2017}, publisher = {The Open Journal}, volume = {2}, number = {11}, pages = {166}, author = {Pranay Seshadri and Geoffrey Parks}, title = {Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  

effective quadrature subsampling tensor and sparse grids uncertainty quantification surrogate modelling polynomial interpolation and approximation

Markdown badge



Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066