edarf: Exploratory Data Analysis using Random Forests

R Submitted 06 October 2016Published 23 October 2016
Review

Editor: @cMadan (all papers)
Reviewers: @PhilippPro (all reviews)

Authors

Zachary M. Jones (0000-0002-7523-0471), Fridolin J. Linder (0000-0002-0499-0676)

Citation

Jones et al, (2016), edarf: Exploratory Data Analysis using Random Forests, Journal of Open Source Software, 1(6), 92, doi:10.21105/joss.00092

@article{Jones2016, doi = {10.21105/joss.00092}, url = {https://doi.org/10.21105/joss.00092}, year = {2016}, publisher = {The Open Journal}, volume = {1}, number = {6}, pages = {92}, author = {Zachary M. Jones and Fridolin J. Linder}, title = {edarf: **E**xploratory **D**ata **A**nalysis using **R**andom Forests}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

random forests machine learning exploratory data analysis

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066