
Scikit-Topt: A Python Library for Algorithm
Development in Topology Optimization
Kohei Watanabe 1

1 JTEKT Corporation, Kariya, Japan
DOI: 10.21105/joss.09092

Software
• Review
• Repository
• Archive

Editor: Mojtaba Barzegari
Reviewers:

• @aslan-ng
• @HaoLI-KU

Submitted: 11 June 2025
Published: 26 December 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Topology optimization is a computational method for optimizing the shape and material
layout of structures and components, typically using the finite element method (FEM). It
automatically generates optimal structural configurations by adjusting the distribution of
material to achieve target performance—for example, minimizing compliance under a volume
constraint. Specifically, the method optimizes an objective function by adjusting design
variables that represent the presence or absence of material in each region.

This technique can be applied to a wide range of physical simulations, including structural
analysis, heat conduction, fluid dynamics, and electromagnetic field analysis, making it a
powerful tool for optimal design.

Scikit-Topt is a Python library that implements topology optimization algorithms. It provides
tools for visualizing parameter transitions and optimization results, thereby facilitating algorithm
tuning and comparative analysis of optimization strategies. The library is tested via GitHub
Actions and includes documentation generated with Sphinx. Installation and usage instructions
are available in the GitHub repository.

Statement of Need
There is a growing demand for accessible and flexible tools for topology optimization that
support unstructured meshes and can be easily integrated into Python-based workflows.
While many existing libraries focus on specific problems with rigid architectures or heavy
dependencies, Scikit-Topt offers a lightweight, modular, and fully Pythonic framework suitable
for both academic research and industrial applications.

In topology optimization, the evolution of material density fields and the scheduling of
algorithmic parameters (e.g., via continuation methods) play a crucial role in achieving high-
quality results. However, most existing libraries provide limited or no support for managing
and visualizing such transitions, making it difficult to interpret the optimization process.

Scikit-Topt addresses this gap by enabling users to track and visualize the progression of density
distributions and parameter schedules throughout the optimization process. This feature is
particularly valuable for algorithm development, comparative studies, and educational purposes.

Purpose and Prior Art
There are numerous open-source projects for topology optimization. Examples include FEniTop
(Jia et al., 2024), TopOpt.jl (Tarek, 2019), Topology optimization using PETSc (Smit et al.,
2021), DL4TO(Erzmann et al., 2023), and pytopo3d (Kim & Kang, 2025). However, many

Watanabe. (2025). Scikit-Topt: A Python Library for Algorithm Development in Topology Optimization. Journal of Open Source Software, 10(116),
9092. https://doi.org/10.21105/joss.09092.

1

https://orcid.org/0009-0008-2278-6418
https://doi.org/10.21105/joss.09092
https://github.com/openjournals/joss-reviews/issues/9092
https://github.com/kevin-tofu/scikit-topt
https://doi.org/10.5281/zenodo.17939786
http://mbarzegary.github.io/
https://orcid.org/0000-0002-1456-0610
https://github.com/aslan-ng
https://github.com/HaoLI-KU
https://creativecommons.org/licenses/by/4.0/
https://github.com/kevin-tofu/scikit-topt
https://doi.org/10.21105/joss.09092


projects are specialized implementations targeted at specific problems and are not well-suited
for solving general topology optimization tasks. Common limitations include:

• Parameters and problem settings are hard-coded, limiting flexibility.
• They rely on grid- or voxel-based finite element analysis, making it difficult to handle

arbitrary geometries.
• They are not packaged properly or depend on outdated software, making installation

and usage difficult.
• They are not designed as standard experimental platforms, making it hard to compare

algorithms across different parameters and case studies.

Scikit-Topt avoids these issues by not including compiled code and depending only on SciPy
(Virtanen et al., 2020), a widely used and stable Python library, making packaging and
installation straightforward. For finite element matrix assembly, it uses scikit-fem (Gustafsson
& McBain, 2020), which also contains no compiled components.

Furthermore, Scikit-Topt visualizes parameter transitions and material density evolution through
Matplotlib (Hunter, 2007) and PyVista (Sullivan & Kaszynski, 2019).

Scikit-Topt implements topology optimization algorithms based on the density method, and
currently supports the following features:

Physics & Analysis

• Structural analysis and heat conduction on unstructured 2D/3D meshes

• Finite element solvers powered by:

– SciPy (Virtanen et al., 2020)
– PyAMG (Bell et al., 2023)
– scikit-fem (Gustafsson & McBain, 2020)

Density-Based Topology Optimization

• SIMP and RAMP material interpolation
• Heaviside projection for binarization acceleration
• Helmholtz filtering for density smoothing
• Sensitivity analysis via adjoint-based backpropagation through SIMP, the Helmholtz

filter, and the Heaviside projection
• Optimization under multiple load cases
• Continuation strategies for scheduling parameters (e.g., β in Heaviside, penalization (p))

Optimization Algorithms

• Optimality Criteria Method (OC)
• Modified Optimality Criteria (MOC)

Usage Example
The following example demonstrates how to use Scikit-Topt to perform topology optimization
on an unstructured mesh using the Optimality Criteria (OC) method. First, a mesh is loaded
using scikit-fem, and a LinearElasticity object is defined with material properties and
boundary conditions. Next, a configuration object for the optimizer is created, and the
optimization process is launched. In this example, a LinearElasticity is created from a
mesh file using scikit-fem, which defines the FEM model, material properties, and boundary
conditions. Then, OC_Config sets the optimization parameters such as volume fraction and
iteration limits. Finally, the optimizer is executed.

Watanabe. (2025). Scikit-Topt: A Python Library for Algorithm Development in Topology Optimization. Journal of Open Source Software, 10(116),
9092. https://doi.org/10.21105/joss.09092.

2

https://doi.org/10.21105/joss.09092


import skfem, sktopt

mesh_path = "./data/model.msh"

basis = sktopt.mesh.loader.basis_from_file(mesh_path, intorder=1)

task = sktopt.mesh.task.LinearElasticity.from_facets(

basis, dirichlet_facets...

)

cfg = sktopt.core.OC_Config(

dst_path="./result",

vol_frac=vol_frac=sktopt.tools.SchedulerConfig(

target_value=0.6, scheduler_type="Step"

),

max_iter=100...

)

optimizer = sktopt.core.OC_Optimizer(cfg, task)

optimizer.parameterize()

optimizer.optimize()

During the optimization process, intermediate density fields are automatically visualized and
saved using PyVista and Matplotlib. This enables users to monitor the convergence behavior
and spatial evolution of the material distribution. An example is shown below. The left figure
shows the boundary conditions, while the right shows the optimized density distribution:

Figure 1: Topology optimization setup under multiple load cases (left) and resulting optimized density
distribution (right)

Watanabe. (2025). Scikit-Topt: A Python Library for Algorithm Development in Topology Optimization. Journal of Open Source Software, 10(116),
9092. https://doi.org/10.21105/joss.09092.

3

https://doi.org/10.21105/joss.09092


Figure 2: Parameter progression during optimization

As an extensible and open framework, Scikit-Topt aims to facilitate reproducible experimentation
and accelerate the development of new topology optimization strategies.

Acknowledgements
I acknowledge the use of open-source tools and libraries that made this research possible.

References
Bell, N., Olson, L. N., Schroder, J., & Southworth, B. (2023). PyAMG: Algebraic Multigrid

Solvers in Python. Journal of Open Source Software, 8(87), 5495. https://doi.org/10.
21105/joss.05495

Erzmann, D., Dittmer, S., Harms, H., & Maaß, P. (2023). DL4TO : A Deep Learning Library
for Sample-Efficient Topology Optimization. In Geometric science of information (pp.
543–551). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38271-0_54

Gustafsson, T., & McBain, G. D. (2020). kinnala/scikit-fem: Simple finite element assemblers
for Python (Version 1.1.0). Zenodo. https://doi.org/10.5281/zenodo.3862391

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science &Amp;
Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55

Jia, Y., Wang, C., & Zhang, X. S. (2024). FEniTop: A simple FEniCSx implementation
for 2D and 3D topology optimization supporting parallel computing. Structural and
Multidisciplinary Optimization, 67 (8). https://doi.org/10.1007/s00158-024-03818-7

Kim, J., & Kang, N. (2025). PyTopo3D: A Python Framework for 3D SIMP-based Topology
Optimization. arXiv Preprint arXiv:2504.05604.

Smit, T., Aage, N., Ferguson, S. J., & Helgason, B. (2021). Topology optimization using
PETSc: A Python wrapper and extended functionality. Structural and Multidisciplinary
Optimization, 64(6), 4343–4353. https://doi.org/10.1007/s00158-021-03018-7

Sullivan, C., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a
streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Software,
4(37), 1450. https://doi.org/10.21105/joss.01450

Tarek, M. (2019). TopOpt.jl: An efficient and high-performance package for topology
optimization of continuum structures in the Julia programming language. Proceedings of
the 13th World Congress of Structural and Multidisciplinary Optimization.

Watanabe. (2025). Scikit-Topt: A Python Library for Algorithm Development in Topology Optimization. Journal of Open Source Software, 10(116),
9092. https://doi.org/10.21105/joss.09092.

4

https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495
https://doi.org/10.1007/978-3-031-38271-0_54
https://doi.org/10.5281/zenodo.3862391
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1007/s00158-024-03818-7
https://doi.org/10.1007/s00158-021-03018-7
https://doi.org/10.21105/joss.01450
https://doi.org/10.21105/joss.09092


Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S. J. van der, Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
… Vázquez-Baeza, Y. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in Python. Nature Methods, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Watanabe. (2025). Scikit-Topt: A Python Library for Algorithm Development in Topology Optimization. Journal of Open Source Software, 10(116),
9092. https://doi.org/10.21105/joss.09092.

5

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.09092

	Summary
	Statement of Need
	Purpose and Prior Art
	Physics & Analysis
	Density-Based Topology Optimization
	Optimization Algorithms


	Usage Example
	Acknowledgements
	References

