The Journal of Open Source Software

DOI: 10.21105/joss.08505

Software
= Review &7
= Repository @
= Archive &0

Editor: Patrick Diehl 2
Reviewers:
= @MoraruMaxim

= @mjcarley

Submitted: 15 May 2025
Published: 14 August 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

smolyax: a high-performance implementation of the
Smolyak interpolation operator in JAX

Josephine Westermann ©'Y and Joshua Chen @2

1 Heidelberg University, GermanyROR 2 Colorado State University, USAROR € Corresponding author

Summary

The smolyax library provides interpolation capabilities for arbitrary multivariate and vector-
valued functions f : R% — R%u for any din,doyy € N. It implements the Smolyak
interpolation operator, which is known to overcome the curse-of-dimensionality plaguing naive
multivariate interpolation (Barthelmann et al., 2000) and uses the barycentric interpolation
formula (Berrut & Trefethen, 2004) for numerical stability. The implementation is based on
JAX (Bradbury et al., 2018), a free and open-source Python library for high-performance
computing that integrates with the Python and NumPy numerical computing ecosystem.
Thanks to JAX's device management, smolyax runs natively on both CPU and GPU. While
implementing Smolyak interpolation in JAX is challenging due to the highly irregular data
structures involved, smolyax overcomes this by employing a tailored batching and padding
strategy that enables efficient vectorization.

smolyax supports interpolation on bounded or unbounded domains via Leja (M. A. Chkifa,
2013) or Gauss-Hermite (Abramowitz & Stegun, 1964) node sequences, respectively. It
provides efficient Numba-accelerated routines to generate isotropic or anisotropic total degree
multi-index sets (Adcock et al., 2022, sec. 2.3.2), which are the key ingredient to generate the
high-dimensional sparse grids (Bungartz & Griebel, 2004) of interpolation nodes required by
the Smolyak interpolation operator. Additional types of node sequences or multi-index sets
can be incorporated easily by implementing a minimalistic interface. The smolyax interpolant
provides further functionality to evaluate its gradient as well as compute its integral.

Statement of Need

Polynomial expansion is a well-studied and powerful tool in applied mathematics, with important
applications in surrogate modeling, uncertainty quantification and inverse problems, see e.g.,
Adcock et al. (2022), Diing et al. (2023), Zech (2018), A. Chkifa et al. (2015), Herrmann et
al. (2024), Westermann et al. (2025), and references therein. Smolyak interpolation offers
a practical way to construct polynomial approximations with known error bounds for a wide
range of function classes, see e.g., Barthelmann et al. (2000), A. Chkifa et al. (2015), and
Adcock et al. (2022).

Several libraries provide CPU-based high-dimensional interpolation functionality, for example
Chaospy (Feinberg & Langtangen, 2015), UQLab (Marelli & Sudret, 2014), The Sparse Grid
Matlab Kit (Piazzola & Tamellini, 2024), PyApprox (Jakeman, 2023), MUQ (Parno et al.,
2021), and UncertainSCI (Tate et al., 2023). The GPU support that is necessary in practice
to go from moderate to high dimensions is offered so far only by Tasmanian (Stoyanov, 2015).
Benchmark experiments suggest that while asymptotic runtime of the Smolyak interpolator
in Tasmanian scale better as the output dimension d,, increases, smolyax offers competitive
asymptotic runtimes for increasing d;, and input data set size.

Westermann, & Chen. (2025). smolyax: a high-performance implementation of the Smolyak interpolation operator in JAX. Journal of Open 1
Source Software, 10(112), 8505. https://doi.org/10.21105/joss.08505.


https://orcid.org/0000-0003-3450-9166
https://orcid.org/0009-0002-2257-5780
https://ror.org/038t36y30
https://ror.org/03k1gpj17
https://doi.org/10.21105/joss.08505
https://github.com/openjournals/joss-reviews/issues/8505
https://github.com/JoWestermann/smolyax
https://doi.org/10.5281/zenodo.16860779
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/MoraruMaxim
https://github.com/mjcarley
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08505

The Journal of Open Source Software

A vectorizable implementation of the Smolyak operator

Recall that given a domain D C R and set of v + 1 € N pairwise distinct interpolation points
(&Y)7_y C D, the univariate polynomial interpolation operator I maps a function f: D — R
onto the unique polynomial I”[f] € P, := span{z’ : i =0,...,v} of maximal degree v such
that £(€) = I[f](€Y) for all i € {0,1, ..., v}.

Tensorized interpolation generalizes univariate interpolation to multivariate functions defined
on a tensor-product domain D = ®?:1D1 with D; C R and d € N by defining I := ®‘;:1I”j,
where v € Ng is a multi-index characterizing the maximal polynomial degree in each dimension.
Since I”[f] € P, := span{z* : p < v}, this approach suffers from the curse of dimensionality
as d increases.

Smolyak interpolation (Barthelmann et al., 2000; Smolyak, 1963) overcomes this issue by
introducing polynomial ansatz spaces P, := span{z* : p € A} parametrized by downward
closed multi-index sets A C Ng. The resulting interpolation operator is a linear combination
of tensorized interpolation operators:

M=) = Y, (D)l

veA ec{0,1}%:v+ecA

Implementing this operator in a vectorized form suitable for high-performance computing
is nontrivial, as vectorization requires inputs to conform to a uniform structure. However,
each tensorized interpolant in the equation above involves reducing a higher-order tensor of
unique shape v via multiplication with one vector per dimension. A naive strategy would be to
zero-pad all tensors in this equation to the smallest common shape (maxueA(l/j));l:l. This,
however, reintroduces the curse of dimensionality, as memory requirements grow exponentially
with d.

smolyax strikes a balance between handling small, uniquely shaped tensors and large, identically
shaped ones. The key idea is to group tensors by their number of active dimensions and
prepare them for vectorized processing within each group. In particular, this involves

1. Dropping indices ("squeezing") of non-active dimensions, i.e., j with v, = 0;
2. Permuting the remaining active dimensions in descending order; and

3. Zero-padding all tensors with the same number of active dimensions to the smallest
common shape.

This reorganizes the tensors into a few large, structured blocks enabling fast vectorized
processing. Asymptotically, in both dimension and size of the polynomial space, the method
requires only a logarithmic-factor increase in overall memory compared with the raw tensors.

Acknowledgements

We thank Thomas O’Leary-Roseberry and Jakob Zech for insightful discussions in the early
stages of this project.

References

Abramowitz, M., & Stegun, |. A. (1964). Handbook of mathematical functions with formulas,
graphs, and mathematical tables: Vols. No. 55 (p. xiv+1046). U. S. Government Printing
Office, Washington, DC.

Adcock, B., Brugiapaglia, S., & Webster, C. G. (2022). Sparse polynomial approximation
of high-dimensional functions (Vol. 25, p. xvii+292). Society for Industrial; Applied
Mathematics (SIAM), Philadelphia, PA. https://doi.org/10.1137/1.9781611976885

Westermann, & Chen. (2025). smolyax: a high-performance implementation of the Smolyak interpolation operator in JAX. Journal of Open 2
Source Software, 10(112), 8505. https://doi.org/10.21105/joss.08505.


https://doi.org/10.1137/1.9781611976885
https://doi.org/10.21105/joss.08505

The Journal of Open Source Software

Barthelmann, V., Novak, E., & Ritter, K. (2000). High dimensional polynomial interpolation on
sparse grids. In Adv. Comput. Math. (Vol. 12, pp. 273-288). https://doi.org/10.1023/A:
1018977404843

Berrut, J.-P., & Trefethen, L. N. (2004). Barycentric Lagrange interpolation. SIAM Rev.,
46(3). https://doi.org/10.1137/S0036144502417715

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.5.1). http://github.com/jax-ml/
jax

Bungartz, H.-J., & Griebel, M. (2004). Sparse grids. Acta Numer., 13, 147-269. https:
//doi.org/10.1017/S0962492904000182

Chkifa, A., Cohen, A., & Schwab, C. (2015). Breaking the curse of dimensionality in sparse
polynomial approximation of parametric PDEs. J. Math. Pures Appl. (9), 103(2), 400-428.
https://doi.org/10.1016/j.matpur.2014.04.009

Chkifa, M. A. (2013). On the Lebesgue constant of Leja sequences for the complex unit disk
and of their real projection. J. Approx. Theory, 166, 176-200. https://doi.org/10.1016/].
jat.2012.11.005

Diing, D., Nguyen, V. K., Schwab, C., & Zech, J. (2023). Analyticity and sparsity in
uncertainty quantification for PDEs with Gaussian random field inputs (Vol. 2334, p.
xv+205). Springer, Cham. https://doi.org/10.1007/978-3-031-38384-7

Feinberg, J., & Langtangen, H. P. (2015). Chaospy: An open source tool for designing
methods of uncertainty quantification. Journal of Computational Science, 11, 46-57.
https://doi.org/10.1016/j.jocs.2015.08.008

Herrmann, L., Schwab, C., & Zech, J. (2024). Neural and spectral operator surrogates: Unified
construction and expression rate bounds. Adv. Comput. Math., 50(4), Paper No. 72, 43.
https://doi.org/10.1007/510444—024—10171—2

Jakeman, J. D. (2023). PyApprox: A software package for sensitivity analysis, bayesian
inference, optimal experimental design, and multi-fidelity uncertainty quantification and
surrogate modeling. Environmental Modelling & Software, 170, 105825. https://doi.org/
10.1016/j.envsoft.2023.105825

Marelli, S., & Sudret, B. (2014). UQLab: A framework for uncertainty quantification in matlab.
In Vulinerability, uncertainty, and risk: Quantification, mitigation, and management (pp.
2554-2563). https://doi.org/10.1061/9780784413609.257

Parno, M., Davis, A., & Seelinger, L. (2021). MUQ: The MIT uncertainty quantification library.
Journal of Open Source Software, 6(68), 3076. https://doi.org/10.21105/joss.03076

Piazzola, C., & Tamellini, L. (2024). Algorithm 1040: The Sparse Grids Matlab Kit -
a Matlab implementation of sparse grids for high-dimensional function approximation
and uncertainty quantification. ACM Transactions on Mathematical Software, 50(1).
https://doi.org/10.1145/3630023

Smolyak, S. A. (1963). Quadrature and interpolation formulas for tensor products of certain
classes of functions. Doklady Akademii Nauk, 148, 1042—-1045.

Stoyanov, M. (2015). User manual: TASMANIAN sparse grids (ORNL/TM-2015/596). Oak
Ridge National Laboratory.

Tate, J., Liu, Z., Bergquist, J. A., Rampersad, S., White, D., Charlebois, C., Rupp, L., Brooks,
D. H., MacLeod, R. S., & Narayan, A. (2023). UncertainSCI: A Python package for
noninvasive parametric uncertainty quantification of simulation pipelines. Journal of Open
Source Software, 8(90), 4249. https://doi.org/10.21105/joss.04249

Westermann, & Chen. (2025). smolyax: a high-performance implementation of the Smolyak interpolation operator in JAX. Journal of Open 3
Source Software, 10(112), 8505. https://doi.org/10.21105/joss.08505.


https://doi.org/10.1023/A:1018977404843
https://doi.org/10.1023/A:1018977404843
https://doi.org/10.1137/S0036144502417715
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1016/j.matpur.2014.04.009
https://doi.org/10.1016/j.jat.2012.11.005
https://doi.org/10.1016/j.jat.2012.11.005
https://doi.org/10.1007/978-3-031-38384-7
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1007/s10444-024-10171-2
https://doi.org/10.1016/j.envsoft.2023.105825
https://doi.org/10.1016/j.envsoft.2023.105825
https://doi.org/10.1061/9780784413609.257
https://doi.org/10.21105/joss.03076
https://doi.org/10.1145/3630023
https://doi.org/10.21105/joss.04249
https://doi.org/10.21105/joss.08505

The Journal of Open Source Software

Westermann, J., Huber, B., O’'Leary-Roseberry, T., & Zech, J. (2025). Performance of neural
and polynomial operator surrogates. Manuscript in preparation.

Zech, J. (2018). Sparse-Grid Approximation of High-Dimensional Parametric PDEs. https:
//doi.org/10.3929 /ethz-b-000340651

Westermann, & Chen. (2025). smolyax: a high-performance implementation of the Smolyak interpolation operator in JAX. Journal of Open 4
Source Software, 10(112), 8505. https://doi.org/10.21105/joss.08505.


https://doi.org/10.3929/ethz-b-000340651
https://doi.org/10.3929/ethz-b-000340651
https://doi.org/10.21105/joss.08505

	Summary
	Statement of Need
	A vectorizable implementation of the Smolyak operator
	Acknowledgements
	References

