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Summary

The smolyax library provides interpolation capabilities for arbitrary multivariate and vector-
valued functions f : R% — R%u for any din,doyy € N. It implements the Smolyak
interpolation operator, which is known to overcome the curse-of-dimensionality plaguing naive
multivariate interpolation (Barthelmann et al., 2000) and uses the barycentric interpolation
formula (Berrut & Trefethen, 2004) for numerical stability. The implementation is based on
JAX (Bradbury et al., 2018), a free and open-source Python library for high-performance
computing that integrates with the Python and NumPy numerical computing ecosystem.
Thanks to JAX's device management, smolyax runs natively on both CPU and GPU. While
implementing Smolyak interpolation in JAX is challenging due to the highly irregular data
structures involved, smolyax overcomes this by employing a tailored batching and padding
strategy that enables efficient vectorization.

smolyax supports interpolation on bounded or unbounded domains via Leja (M. A. Chkifa,
2013) or Gauss-Hermite (Abramowitz & Stegun, 1964) node sequences, respectively. It
provides efficient Numba-accelerated routines to generate isotropic or anisotropic total degree
multi-index sets (Adcock et al., 2022, sec. 2.3.2), which are the key ingredient to generate the
high-dimensional sparse grids (Bungartz & Griebel, 2004) of interpolation nodes required by
the Smolyak interpolation operator. Additional types of node sequences or multi-index sets
can be incorporated easily by implementing a minimalistic interface. The smolyax interpolant
provides further functionality to evaluate its gradient as well as compute its integral.

Statement of Need

Polynomial expansion is a well-studied and powerful tool in applied mathematics, with important
applications in surrogate modeling, uncertainty quantification and inverse problems, see e.g.,
Adcock et al. (2022), Diing et al. (2023), Zech (2018), A. Chkifa et al. (2015), Herrmann et
al. (2024), Westermann et al. (2025), and references therein. Smolyak interpolation offers
a practical way to construct polynomial approximations with known error bounds for a wide
range of function classes, see e.g., Barthelmann et al. (2000), A. Chkifa et al. (2015), and
Adcock et al. (2022).

Several libraries provide CPU-based high-dimensional interpolation functionality, for example
Chaospy (Feinberg & Langtangen, 2015), UQLab (Marelli & Sudret, 2014), The Sparse Grid
Matlab Kit (Piazzola & Tamellini, 2024), PyApprox (Jakeman, 2023), MUQ (Parno et al.,
2021), and UncertainSCI (Tate et al., 2023). The GPU support that is necessary in practice
to go from moderate to high dimensions is offered so far only by Tasmanian (Stoyanov, 2015).
Benchmark experiments suggest that while asymptotic runtime of the Smolyak interpolator
in Tasmanian scale better as the output dimension d,, increases, smolyax offers competitive
asymptotic runtimes for increasing d;, and input data set size.
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A vectorizable implementation of the Smolyak operator

Recall that given a domain D C R and set of v + 1 € N pairwise distinct interpolation points
(&Y)7_y C D, the univariate polynomial interpolation operator I maps a function f: D — R
onto the unique polynomial I”[f] € P, := span{z’ : i =0,...,v} of maximal degree v such
that £(€) = I[f](€Y) for all i € {0,1, ..., v}.

Tensorized interpolation generalizes univariate interpolation to multivariate functions defined
on a tensor-product domain D = ®?:1D1 with D; C R and d € N by defining I := ®‘;:1I”j,
where v € Ng is a multi-index characterizing the maximal polynomial degree in each dimension.
Since I”[f] € P, := span{z* : p < v}, this approach suffers from the curse of dimensionality
as d increases.

Smolyak interpolation (Barthelmann et al., 2000; Smolyak, 1963) overcomes this issue by
introducing polynomial ansatz spaces P, := span{z* : p € A} parametrized by downward
closed multi-index sets A C Ng. The resulting interpolation operator is a linear combination
of tensorized interpolation operators:

M=) = Y, (D)l

veA ec{0,1}%:v+ecA

Implementing this operator in a vectorized form suitable for high-performance computing
is nontrivial, as vectorization requires inputs to conform to a uniform structure. However,
each tensorized interpolant in the equation above involves reducing a higher-order tensor of
unique shape v via multiplication with one vector per dimension. A naive strategy would be to
zero-pad all tensors in this equation to the smallest common shape (maxueA(l/j));l:l. This,
however, reintroduces the curse of dimensionality, as memory requirements grow exponentially
with d.

smolyax strikes a balance between handling small, uniquely shaped tensors and large, identically
shaped ones. The key idea is to group tensors by their number of active dimensions and
prepare them for vectorized processing within each group. In particular, this involves

1. Dropping indices ("squeezing") of non-active dimensions, i.e., j with v, = 0;
2. Permuting the remaining active dimensions in descending order; and

3. Zero-padding all tensors with the same number of active dimensions to the smallest
common shape.

This reorganizes the tensors into a few large, structured blocks enabling fast vectorized
processing. Asymptotically, in both dimension and size of the polynomial space, the method
requires only a logarithmic-factor increase in overall memory compared with the raw tensors.
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