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Summary
The mlr3 ecosystem is a versatile toolbox for machine learning (ML) in R (R Core Team,
2019) that is targeted towards both practitioners and researchers (Bischl et al., 2024). The
core mlr3 package (Lang et al., 2019) defines the standardized interface for ML, but its goal
is not to implement algorithms. This is, e.g., done by the mlr3learners extension (Lang,
Au, et al., 2024) that connects 21 stable learning algorithms from various R packages to
the mlr3 ecosystem that serve as a good starting point for many ML tasks. In addition,
mlr3extralearners is a community-driven package that integrates many more methods. The
package currently wraps 147 different ML algorithms from many different R packages, for
tasks such as classification, regression, and survival analysis. This enables users to seamlessly
access and utilize these learners directly within their workflows. One of the strengths of mlr3
is the design and implementation of large-scale benchmark experiments. For example, datasets
for such experiments can be easily obtained from the OpenML1 repository (Vanschoren et
al., 2014) via the mlr3oml package (Lang & Fischer, 2024). Furthermore, strong support for
parallelization, including execution on high-performance computing clusters via batchtools

(Lang et al., 2017) and its mlr3 integration mlr3batchmark (Becker & Lang, 2024), is available
and well documented (Fischer et al., 2024). In combination, these tools allow for large-scale
empirical investigations, which has, for example, been used to collect and analyze data about
hyperparameter landscapes of ML algorithms (Binder et al., 2020). An overview of all mlr3

1https://openml.org
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learners, including those introduced through mlr3extralearners, is available on the mlr3
website2.

Beyond accessibility, mlr3extralearners also allows mlr3 users to easily connect their own
algorithms to the interface. This enriches each learner with extensive metadata about its hyper-
parameter space, prediction types, and other key attributes. Furthermore, mlr3extralearners
includes robust mechanisms for quality assurance, such as regular automated sanity checks and
verification tests that ensure learner parameters are consistent and up-to-date with the latest
versions of their underlying R packages. In order to allow the integration of learners that are not
available on CRAN, the package is hosted on the mlr R-universe3. By providing a standardized
interface and comprehensive metadata for each learner, mlr3extralearners enhances the
FAIRness (findability, accessibility, interoperability, and reusability) of ML algorithms within
the R ecosystem (Wilkinson et al., 2016).

Statement of Need
ML often requires practitioners to navigate a diverse array of modeling problems, each
with unique demands such as predictive performance, prediction speed, interpretability, or
compatibility with specific data types and tasks. To address this challenge, packages like
mlr3’s predecessor mlr (Bischl et al., 2016), caret (Kuhn, 2008), and more recently parsnip

(Kuhn & Vaughan, 2024) from the tidymodels ecosystem (Kuhn & Wickham, 2020) were
designed to provide unified interfaces for simplifying model experimentation. For instance,
parsnip provides a clean and consistent way to define models, enabling users to experiment
with different algorithms without dealing with the nuances of underlying package syntax.
Similarly, the mlr3 ecosystem aims to streamline model selection and experimentation, making
it a versatile toolbox for ML in R.

Within this ecosystem, mlr3extralearners plays a crucial role by providing a comprehensive
collection of external ML algorithms integrated into the mlr3 framework. This ensures that
users can access a wide variety of learners to meet their needs and choose the most appropriate
algorithm for their particular problem. While connecting new learners to mlr3 is straightforward
and can be done on a per-need basis, integrating them into mlr3extralearners benefits
the broader community by avoiding redundant effort and ensuring accessibility for all users.
Additionally, contributions to mlr3extralearners are reviewed by the package maintainers,
providing a layer of quality assurance. This review process ensures that integrated learners
work as expected and adhere to the high standards of the mlr3 ecosystem.

Beyond its utility for users, mlr3extralearners also offers significant advantages for developers
of ML packages. By integrating a new algorithm into the mlr3 ecosystem, developers can
immediately make their methods accessible to a wider audience. This integration facilitates
seamless tuning (Becker et al., 2024) and preprocessing (Binder et al., 2021) through the
broader mlr3 framework, enhancing the usability and impact of their work.

Features
The core functionality of mlr3extralearners is to integrate new learners into the mlr3

ecosystem, allowing users to access a wide array of learning algorithms through a unified syntax
and standardized interface. However, the advantages of mlr3extralearners go well beyond
simple integration.

Metadata
One core feature of the mlr3 ecosystem is that it annotates learners with extensive metadata.

2https://mlr-org.com/learners.html
3https://mlr-org.r-universe.dev
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• Hyperparameter management: The hyperparameter spaces of learners are defined
using ParamSet objects from the paradox package (Lang, Bischl, et al., 2024). Each
hyperparameter is explicitly typed, with annotations for feasible values. This ensures
valid configurations and simplifies tasks like hyperparameter tuning.

• Task and prediction types: Learners are categorized with respect to their task type (e.g. as
classification, regression or survival analysis (Sonabend et al., 2021)) and prediction
types (e.g. probabilities or response predictions). This allows users to easily identify
suitable learners for their specific modeling tasks.

• Standardized properties: Learners are annotated with detailed attributes, including the
types of features they can process and their support for functionalities such as feature
selection, importance scoring, handling missing values, or monitoring performance on a
separate validation set during training among others. This allows users to have a clear
understanding of a learner’s capabilities and limitations and assess if it aligns with the
specific requirements of their workflows, reducing trial-and-error and streamlining the
modeling process.

Functional Correctness
Integrating learners from diverse R packages poses challenges, on the one hand because changes
in upstream APIs need to be reflected in mlr3extralearners and on the other hand because
we want to ensure a high level of quality of algorithms connected to mlr3. mlr3extralearners

addresses both points through automated checks:

• Interface consistency: The package regularly verifies that each learner adheres to the
expected interface of the latest released version of its upstream function. When new
parameters are introduced or existing ones changed or removed, the tests fail until the
parameter sets are updated accordingly.

• Automated testing: In general, writing unit tests for ML algorithms is challenging, because
of edge-cases, numeric errors, and the fact that the input to these algorithms can be
arbitrary datasets. mlr3extralearners is aimed at addressing these challenges, and
performs regular automated tests on all learners. These tests include sanity checks that,
e.g., verify that the learners produce sensible predictions for simple randomly generated
datasets. Furthermore, the tests also validate the learners’ metadata annotations, such
as whether a learner can actually handle missing values or is able to produce importance
scores. In the past, these tests have detected bugs in some upstream packages and we
have subsequently notified their authors.

Simplified Integration of New Learners
To streamline the addition of new learners, mlr3extralearners provides robust support tools:

• Code templates: Predefined templates are available for both the learner implementation
and associated test files. Contributors can utilize these templates through an R function
that accepts learner metadata and generates new R code files based on the templates.
This approach pre-fills as much information as possible, minimizing the input required
from the contributor. Note that these templates can also be used when learners are only
used locally for specific projects and not contributed to mlr3extralearners.

• Guides and resources: The package website4 contains an extensive tutorial, as well as a
curated list of common issues encountered during learner integration, making the process
accessible for contributors of all experience levels. Additionally, every integrated learner
includes a simple example of usage in the documentation, ensuring that users can quickly
understand how to utilize the learner effectively within the mlr3 ecosystem.

4https://mlr3extralearners.mlr-org.com
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Community Impact and Future Directions
mlr3extralearners is a direct result of the contributions from a diverse community of authors
and developers. The authors of this paper themselves have been actively involved in integrating
learners, providing quality assurance, and maintaining the package’s infrastructure. Their
contributions, such as the addition of learners for specialized tasks like survival analysis and
high-dimensional data, highlight the impact that thoughtful integration has on the mlr3

ecosystem. This ongoing effort illustrates the transformative potential of community-driven
development, ensuring that mlr3extralearners continues to grow as a dynamic and inclusive
repository for ML algorithms.

Future work will also focus on expanding the ecosystem with more deep learning methods
through mlr3torch (Fischer & Binder, 2025), which aims to seamlessly integrate deep learning
models and neural network architectures within the mlr3 framework.
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