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Summary

Since the first direct detection of gravitational waves by the LIGO-Virgo collaboration in 2015
(B. P. Abbott et al., 2016), the size of the gravitational-wave transient catalog has grown
to nearly 100 events (R. Abbott et al., 2023), with the ongoing fourth observing run more
than doubling the total number. Extracting astrophysical or cosmological information from
these observations is a hierarchical Bayesian inference problem. GWPopulation is designed to
provide simple-to-use, robust, and extensible tools for hierarchical inference in gravitational-
wave astronomy or cosmology. It has been widely adopted for gravitational-wave astronomy,
including producing flagship results for the LIGO-Virgo-KAGRA collaborations (Abac et al.,
2024; R. Abbott et al., 2023)'. While designed to work with observations of compact binary
coalescences, GWPopulation may be available to a wider range of hierarchical Bayesian inference
problems.

Building on Bilby (Ashton et al., 2019), GWPopulation can easily be used with a range of
stochastic samplers through a standard interface. By providing access to a range of array
backends (currently NumPy, Harris et al., 2020; JAX, Bradbury et al., 2018; and CuPy, Okuta
et al., 2017), GWPopulation is hardware agnostic and can leverage hardware acceleration to
meet the growing computational needs of these analyses. The package includes:

= Implementations of the most commonly used likelihood functions in the field.

= Commonly used models for describing the astrophysical population of merging compact
binaries, including the "PowerLaw+Peak” and “PowerLaw+Spline” mass models, “De-
fault” spin model, and “PowerLaw” redshift models used in the latest LIGO-Virgo-KAGRA
collaboration analysis of the compact binary population.?

= Functionality to simultaneously infer the astrophysical distribution of sources and cosmic
expansion history using the “spectral siren” method (Ezquiaga & Holz, 2022).

= A standard specification allowing users to define additional models.

LFor a full listing of papers using GWPopulation, see the citations for the previous publication.
2See R. Abbott et al. (2023) for details of these models.
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Statement of need

Hierarchical Bayesian inference is the standard method for inferring parameters describing the
astrophysical population of compact binaries and the cosmic expansion history (e.g., Thrane
& Talbot, 2019; Vitale et al., 2022). The first step in the hierarchical inference process is
drawing samples from the posterior distributions for the source parameters of each event under
a fiducial prior distribution along with a set of simulated signals used to quantify the sensitivity
of gravitational-wave searches. Next, these samples are used to estimate the population
likelihood using Monte Carlo integration with a computational cost that grows quadratically
with the size of the observed population. Since evaluating these Monte Carlo integrals is
embarrassingly parallel, this is a prime candidate for hardware acceleration using graphics or
tensor processing units. GWPopulation provides functionality needed to perform this second
step and is extensively used by members of the gravitational-wave astronomy community
including the LIGO-Virgo-KAGRA collaborations.

Maximizing the information we can extract from the gravitational-wave transient catalog
requires a framework where potential population models can be quickly constrained with
the observed data with minimal boilerplate code. Additionally, the availability of a standard
open-source implementation improves the reliability and reproducibility of published results.
GWPopulation addresses all of these points by providing an open-source implementation of
the functionality needed to perform population analyses while enabling user-defined models
to be provided by a Python function/class definition. The flexible backend system means
hardware acceleration can be used with minimal coding effort. Using GWPopulation on Google
Colab, it is possible to perform an exploratory analysis with a new population model in minutes
and produce production-quality results without needing high-performance or high-throughput
computing clusters. With access to high-throughput computing resources, a wide range of
potential models can be easily explored using the associated gwpopulation_pipe (Talbot,
2021) package.

Related packages

Several other packages are actively used and maintained in the community that can be used
for population inference that operate in complementary ways to GWPopulation.

= GWiInferno (Edelman et al., 2023) is a package for hierarchical inference with gravitational-
wave sources intended for use with NumPyro (Phan et al., 2019) targeting high-
dimensional models. GWInferno includes many population models initially adapted
from GWPopulation.

= There is a wide range of packages designed for joint astrophysical and cosmological
inference with gravitational-wave transients including icarogw (Mastrogiovanni et al.,
2024), gwcosmo (Gray et al., 2023), MGCosmoPop (Mancarella & Genoud-Prachex, 2022),
and CHIMERA (Borghi et al., 2024). icarogw supports some hardware acceleration using
CuPy but some cosmological calculations are limited to CPU support only. chimera is
JAX-compatible and supports flat Lambda-CDM cosmologies along with analysis using
galaxy catalogs.

= vamana (Tiwari, 2021) models the compact binary distribution as a mixture of Gaussians
and power-law distributions, and popmodels (Wysocki & O’Shaughnessy, 2017--) imple-
ments a range of parametric models for the compact binary distribution and supports
sampling via emcee (Foreman-Mackey et al., 2013). However, neither supports hardware
acceleration at the time of writing.
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