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Summary
Soil moisture at the Earth’s surface is essential in many hydrological, pedological, and biological
processes. Earth observations from satellites have been recognized as the most efficient and
reliable means for assessing soil water content. The satellite-derived OPTRAM model has been
shown to determine soil moisture over large areas accurately. Spectral data were obtained
from different spaceborne systems to calculate several vegetation indices, and the model was
adjusted to various SM conditions. The rOPTRAM package allows researchers and practitioners
to monitor soil moisture contents at a regional scale and long-time intervals.

Statement of Need
Soil moisture (SM) at the Earth’s surface is essential in many hydrological, pedological, and
biological processes. Pasture is the most common land use, where grazing livestock spreads
over about 77% of the global agricultural land, and supports billions of inhabitants (Maestre
et al., 2022; Ramankutty et al., 2008). Therefore SM is a critical resource in these regions for
the growth of palatable plants, pasture quality, and rangeland health (Kusserow, 2017; Mbow
et al., 2021). A time series of SM measurements can determine the quality and potential
for grazing. By following seasonal variations in SM, forecasts for preferred grazing lands
can be prepared. In-situ volumetric soil content is typically measured using Time Domain
Reflectometer (TDR) sensors with a high temporal resolution (Kirkham, 2014). TDR sensors
have been recognized to be very accurate and can function for long periods. However these
data are point measurements and cannot cover the extensive areas needed for determining
regional scale grazing potential. Cosmic Ray Neutron Scanner (CRNS) technology can also
acquire SM measurements at high temporal resolution, with a larger spatial scale than TDR,
covering up to 30 hectares. These latter instruments are, however, quite expensive, and less
accurate than TDR spot measurements (Davies et al., 2022; Schrön et al., 2017). To overcome
the locality issue, Earth observations from satellites are the most efficient and reliable means for
assessing the Earth’s resources, including SM due to its large-scale coverage and repeatability
for the last decades.

Less than a decade ago, Sadeghi et al. (2017) showed that shortwave infrared (SWIR)
Transformed Reflectance (STR) is applicative to assess SM. They developed a novel physical-
based model, OPtical TRApezoid Model (OPTRAM) using designated spectral bands of remote
sensing imagery. OPTRAM was recently validated (Longo-Minnolo et al., 2022) to address
the need to estimate SM over vast areas at regional scales. The model can now be applied to
various earth observation systems, such as Sentinel-2 or Landsat, with visible, near-infrared,
and SWIR bands. (Ambrosone et al., 2020; Dubinin et al., 2020).

The overarching goal of the current project was to program the original OPTRAM algorithm,
with some improvements, using the open-source R language. The spectral data were obtained
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from different spaceborne systems to calculate several vegetation indices, and the model was
adjusted to various SM conditions.

Algorithm
rOPTRAM produces a large dataset of pixel values of two satellite-derived raster layers: a
vegetation index (VI), such as the Normalized Difference Vegetation Index (NDVI) and the
SWIR transformed reflectance (STR). All pairs of pixel values at all acquired image dates are
plotted as a scatter plot. Then regression lines are extracted at both the upper (“wet”) and
lower (“dry”) bounds of the scatter plot. The slopes and intercepts of these lines are the
model coefficients used to derive a spatially explicit soil moisture map. This soil moisture map
is calculated using the equations developed by Sadeghi et al. (2017). In his original work,
Sadeghi et al. (2017) visually examined the scatterplot to locate the trapezoid edges.

The new rOPTRAM package, on the other hand, delineates the upper and lower, “wet” and
“dry” bounds of the STR/VI scatterplot programmatically, through the following approach.
Sentinel-2 images are acquired using the CDSE package (Karaman, 2023), clipped to the study
area, for the user-specified time range. The Application Programming Interface (API) request
sent to the Copernicus DataSpace Ecosystem1 (CDSE) prepares both VI and STR indices. All
pixel values for both indices, and all images along the time series are collected into a table and
plotted as a scatterplot. The VI axis of the scatterplot is divided, programmatically, into a
series of small intervals, and a subset of the STR values, within that narrow interval of VI is
extracted. Outlier STR values are removed based on the accepted 1.5 times Inter Quartile
Range (IQR) method. Then, among the remaining values, the top and bottom 2% quartiles of
these STR values are found for each interval. The upper and lower quartile values are paired
with the VI values for each interval, thus collecting points along both the “wet” and “dry
trapezoid edges. Each of these two sets typically consists of 50 to 100 points. This approach
offers a mathematically robust and repeatable implementation of the OPTRAM model.

One of three possible equations is fitted to each of these “wet” and “dry” sets of trapezoid
edges (Figure Figure 1. A linear Ordinary Least Squares (OLS) regression line is fitted to each
set of points in the most straightforward case. The intercept and slope of these lines give the
coefficients for calculating soil water content. Two additional fitted options are implemented in
rOPTRAM: exponential and second-order polynomial. For OLS-fitted curves, two coefficients are
derived for each line, the slope and intercept. Similarly, the exponential fitted curve requires
two coefficients, the intercept and the multiplier of VI in the exponential term. A polynomial
fit, on the other hand, consists of 3 coefficients, the intercept, and the coefficients for the
first-order and second-order terms.

1https://dataspace.copernicus.eu/
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Figure 1: OPTRAM schematic diagram.

Linear regression fit of trapezoid edges

𝑆𝑇𝑅𝑑𝑟𝑦 = 𝑖𝑑𝑟𝑦 + 𝑠𝑑𝑟𝑦 ⋅ 𝑉 𝐼

𝑆𝑇𝑅𝑤𝑒𝑡 = 𝑖𝑤𝑒𝑡 + 𝑠𝑤𝑒𝑡 ⋅ 𝑉 𝐼

where: 𝑖𝑤𝑒𝑡, 𝑖𝑑𝑟𝑦 are the regression line intercepts, and 𝑠𝑤𝑒𝑡, 𝑠𝑑𝑟𝑦 are the slopes respectively.

Then soil moisture can be derived from:

𝑊 =
𝑆𝑇𝑅 − 𝑆𝑇𝑅𝑑𝑟𝑦

𝑆𝑇𝑅𝑤𝑒𝑡 − 𝑆𝑇𝑅𝑑𝑟𝑦

Exponential curve fit of trapzoid edges

Exponential fitted curves for the “wet” and “dry” edges can be expressed as:

𝑆𝑇𝑅𝑑𝑟𝑦 = 𝑖𝑑𝑟𝑦 ⋅ 𝑒𝑥𝑝(𝑠𝑑𝑟𝑦 ⋅ 𝑉 𝐼)

𝑆𝑇𝑅𝑤𝑒𝑡 = 𝑖𝑤𝑒𝑡 ⋅ 𝑒𝑥𝑝(𝑠𝑤𝑒𝑡 ⋅ 𝑉 𝐼)

and in this case, soil moisture is derived as:

𝑊 =
𝑆𝑇𝑅 − (𝑖𝑑𝑟𝑦 ⋅ 𝑒𝑥𝑝(𝑠𝑑𝑟𝑦 ⋅ 𝑉 𝐼))

(𝑖𝑤𝑒𝑡 ⋅ 𝑒𝑥𝑝(𝑠𝑤𝑒𝑡 ⋅ 𝑉 𝐼)) − (𝑖𝑑𝑟𝑦 ⋅ 𝑒𝑥𝑝(𝑠𝑑𝑟𝑦 ⋅ 𝑉 𝐼))
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Second-order polynomial fit of trapezoid edges

Polynomial fitted regression lines for the “wet” and “dry” edges can be expressed as:

𝑆𝑇𝑅𝑑𝑟𝑦 = 𝛼𝑑𝑟𝑦 + 𝛽1𝑑𝑟𝑦 ⋅ 𝑉 𝐼 + 𝛽2𝑑𝑟𝑦 ⋅ 𝑉 𝐼2

𝑆𝑇𝑅𝑤𝑒𝑡 = 𝛼𝑤𝑒𝑡 + 𝛽1𝑤𝑒𝑡 ⋅ 𝑉 𝐼 + 𝛽2𝑤𝑒𝑡 ⋅ 𝑉 𝐼2

and in this case, soil moisture is derived as:

𝑊 =
𝑆𝑇𝑅 − (𝛼𝑑𝑟𝑦 + 𝛽1𝑑𝑟𝑦 ⋅ 𝑉 𝐼 + 𝛽2𝑑𝑟𝑦 ⋅ 𝑉 𝐼2)

(𝛼𝑤𝑒𝑡 + 𝛽1𝑤𝑒𝑡 ⋅ 𝑉 𝐼 + 𝛽2𝑤𝑒𝑡 ⋅ 𝑉 𝐼2) − (𝛼𝑑𝑟𝑦 + 𝛽1𝑑𝑟𝑦 ⋅ 𝑉 𝐼 + 𝛽2𝑑𝑟𝑦 ⋅ 𝑉 𝐼2)
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