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Summmary

Modeling time series data, such as stock prices and text sequences, is effectively achieved using
Markov Chains. ChainoPy facilitates the modeling of time series data with Markov Chains
and Markov Switching Models, optimizing for computational efficiency in terms of speed
and memory usage. Additionally, ChainoPy enables the integration of probabilistic models
like Markov Chains with Neural Networks, traditionally considered deterministic, through
the MarkovChainNeuralNetwork class. This hybrid approach leverages the strengths of both
probabilistic and neural network methodologies.

Statement of Need

There are limitations in current Markov Chain packages like PyDTMC (Belluzzo, 2024),
simple-markov (Charisopoulos & Andrikopoulos, 2016), mchmm (Terpilovskii, 2021) that rely
solely on NumPy (Harris et al., 2020) and Python for implementation. Markov Chains often
require iterative convergence-based algorithms (Rosenthal, 1995), where Python’s dynamic
typing, Global Interpreter Lock (GIL), and garbage collection can hinder potential performance
improvements like parallelism. To address these issues, we enhance our library with extensions
like Cython for efficient algorithm implementation. Additionally, we introduce a Markov Chain
Neural Network (Awiszus & Rosenhahn, 2018) that simulates given Markov Chains while
preserving statistical properties from the training data. This approach eliminates the need
for post-processing steps such as sampling from the outcome distribution while giving neural
networks stochastic properties rather than deterministic behavior. Finally, we implement the
famous Markov Switching Models (Hamilton, 2010) which are one of the fundamental and
widely used models in applications such as Stock Market price prediction. ChainoPy enables
new workflows through its advanced algorithms, such as Markov Chain Neural Networks and
Markov Switching Models, which are not available in PyDTMC. These capabilities, combined
with significant performance improvements in both fast and slow functions, provide added
value for complex stochastic analysis tasks.

Implementation

We implement three public classes MarkovChain, MarkovChainNeuralNetwork and
MarkovSwitchingModel that contain core functionalities of the package. Performance intensive
functions for the MarkovChain class are implemented in the _backend directory where a custom
Cython (Behnel et al., 2010) backend is implemented circumventing drawbacks of Python like
the GIL, dynamic typing, etc. The MarkovChain class implements various functionalities for
discrete-time Markov chains. It provides methods for fitting the transition matrix from data,
simulating the chain, and calculating properties. It also supports visualization for Markov
chains.

We do the following key optimizations:
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• Efficient matrix power: If the matrix is diagonalizable, an eigenvalue decomposition
based matrix power is performed.

• Parallel Execution: Some functions are parallelized.
• __slots__ usage: __slots__ is used instead of __dict__ for storing object attributes,

reducing memory overhead.
• Caching decorator: Class methods are decorated with caching to avoid recomputation of

unnecessary results.
• Direct LAPACK use: LAPACK function dgeev is directly used to calculate stationary-

distribution via SciPy’s (Virtanen et al., 2020) cython_lapack API instead of additional
NumPy overhead.

• Utility functions for visualization: Utility functions are implemented for visualizing the
Markov chain.

• Sparse storage of transition matrix: The model is stored as a JSON object, and if 40%
or more elements of the transition matrix are near zero, it is stored in a sparse format.

The MarkovChainNeuralNetwork implementation defines a neural network model, using Py-
Torch (Ansel et al., 2024) for simulating Markov chain behavior. It takes a Markov chain
object and the number of layers as input, with each layer being a linear layer. The model’s
forward method computes the output probabilities for the next state. The model is trained
using stochastic gradient descent (SGD) with a learning rate scheduler. Finally, the model’s
performance is evaluated using the Kullback–Leibler divergence between the original Markov
chain’s transition probabilities and those estimated from the simulated walks.

Documentation, Testing and Benchmarking

For documentation we use Sphinx. For testing and benchmarking we use the Pytest and
PyDTMC (Belluzzo, 2024) packages.

The results are as follows:

• is_absorbing Methods

Transition-
Matrix Size 10 50 100

Mean St. dev Mean St. dev Mean St. dev
Function
1. is_absorbing
(ChainoPy)

97.3ns 2.46ns 91.8ns 0.329ns 98ns 0.4ns

1. is_absorbing
(PyDTMC)

386ns 5.79ns 402ns 2.01ns 417ns 3ns

• stationary_dist vs pi Methods

Transition-
Matrix Size 10 50 100

Mean St. dev Mean St. dev Mean St. dev
Function
1.
stationary_dist
(ChainoPy)

1.47us 1.36us 93.4ns 5.26ns 96.6ns 3.9ns

1. pi
(PyDTMC)

137us 12.9us 395ns 15.4ns 398ns 10.5ns

• fit vs fit_sequence Method:
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Number of
Words 10 50 100

Mean St. dev Mean St. dev Mean St. dev
Function
1. fit
(ChainoPy)

116 µs 5.28 µs 266 µs 15 µs 496 µs 47.3 µs

1. fit_sequence
(PyDTMC)

14 ms 1.74 ms 14.4 ms 1.17 ms 17.3 ms 2.18 ms

• simulate Method

Transition-Matrix
Size

N-
Steps

ChainoPy
Mean

ChainoPy
St. dev

PyDTMC
Mean

PyDTMC
St. dev

10 1000 22.8 ms 2.32 ms 28.2 ms 933 µs
5000 86.8 ms 2.76 ms 155 ms 5.25 ms

50 1000 17.6 ms 1.2 ms 29.9 ms 1.09 ms
5000 84.5 ms 4.84 ms 161 ms 7.62 ms

100 1000 21.6 ms 901 µs 37.4 ms 3.99 ms
5000 110 ms 11.3 ms 162 ms 5.75 ms

500 1000 24 ms 3.73 ms 39.6 ms 6.07 ms
5000 112 ms 6.63 ms 178 ms 26.5 ms

1000 1000 26.1 ms 620 µs 46.1 ms 6.47 ms
5000 136 ms 2.49 ms 188 ms 2.43 ms

2500 1000 42 ms 3.77 ms 59.6 ms 2.29 ms
5000 209 ms 16.4 ms 285 ms 27.6ms

Apart from this, we test the MarkovChainNeuralNetworks by training them and com-
paring random walks between the original MarkovChain object and those generated by
MarkovChainNeuralNetworks through a histogram.

Conclusion
In conclusion, ChainoPy offers a Python library for discrete-time Markov Chains and includes
features for Markov Chain Neural Networks, providing a useful tool for researchers and
practitioners in stochastic analysis with efficient performance.
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