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Summary
Kinetic Monte Carlo (kMC) is an atomistic and stochastic simulation technique that captures
the temporal evolution of various systems in materials science, chemistry, physics, biology, and
engineering. Several open-source kMC packages are currently distributed online. Nevertheless,
such implementations are typically lattice-based and are mostly designed to study ordered,
crystalline materials. In this work, we present PArallel PREdefined CAtalog (PAPRECA), an
easy-to-use and completely lattice-free open-source kMC software suitable for simulations on
amorphous materials or systems characterized by a low degree of crystallinity. PAPRECA is a
parallel C++ software using the Message Passing Interface (MPI) protocol and coupled with
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Thompson et al.,
2022) to enable pure kMC runs as well as hybrid kMC/Molecular Dynamics (MD) simulations.

Statement of need
KMC models have been deployed to investigate non-equilibrium dynamics and properties of
thin films (Ntioudis et al., 2023), nanoparticles (Turner et al., 2016), quantum dots (Zhu et
al., 2007), semiconductors (Kaap & Koster, 2016), catalysts (Stamatakis & Vlachos, 2012),
energy-storage devices (Abbott & Hanke, 2022), interstellar grain chemistry (Cuppen et al.,
2013), protein folding (Makarov et al., 2001), and enzyme reactions (Slepoy et al., 2008).
Overall, kMC techniques are, on one hand, less accurate, but on the other hand, more
computationally efficient than MD. This is justified by the fact that kMC does not describe
atomic vibrations explicitly but evolves the system through discrete elementary processes (e.g.,
diffusion, deposition, reactions etc.) (Fichthorn & Weinberg, 1991; Gillespie, 1976). In any
case, the efficiency of kMC models unlocks the possibility for long-timescale simulations with
molecular-level resolution beyond the timescales accessible to MD. Note that efficient MD
algorithms can be used to simulate systems with 104-106 atoms from ps to 𝜇s (Thompson et
al., 2022)).

Typically, on-lattice kMC models select atomistic events from a predefined table and execute
them on fixed lattice sites (Andersen et al., 2019). The use of fixed lattice sites contributes to
the computational efficiency of on-lattice algorithms but introduces obstacles associated with
the study of unordered materials. Several lattice-based open-source kMC software are available,
examples include the KMCLib (Leetmaa & Skorodumova, 2014), lattice_mc (Morgan, 2017),
KMC_Lattice v2.0 (Heiber, 2019), Excimontec v1.0 (Heiber, 2020), MonteCoffee (Jørgensen
& Grönbeck, 2018), and KIMERA (P. Martin et al., 2020). Additionally, the Stochastic Parallel
PARticle Kinetic Simulator (SPPARKS) (Mitchell et al., 2023) offers solely on-lattice kMC
modeling capabilities, since the only currently available off-lattice solver is a Metropolis Monte
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Carlo relaxation scheme. Furthermore, a wide range of on-lattice kMC packages such as kmcos
(Reuter et al., 2020), PyCD (Pasumarthi, 2017), VIS-A-VIS (Grabowski & Kochanczyk, 2022),
MulSKIPS (Helleboid, 2021), Kimocs (Jansson, 2016), KSOME (Nandipati, 2021), kMCpy
(Deng, 2022), and Morphokinetics (Alberdi & Albi, 2018) are available in open-source software
repositories.

EON (Chill et al., 2014) is the only identified off-lattice package distributed under an open-
source license. This is an Adaptive kinetic Monte Carlo (AkMC) software that discovers as
well as stores atomic-scale processes (e.g., reactions, diffusion) throughout the simulation
instead of stochastically selecting transition events from a predefined table (Henkelman &
Jónsson, 2001). Such feature elevates the accuracy of AkMC approaches but decreases their
computational efficiency as well as increases their implementation complexity compared to
predefined table kMC schemes.

To the best of our knowledge, a completely lattice-free kMC code with predefined table of
events is currently unavailable in open-source repositories. PAPRECA aims to fill that gap by
providing the scientific community with a general and easy-to-use solution for performing
long-timescale atomistic simulations on complex materials science, chemistry, physics, biology,
and engineering problems involving amorphous materials or non-crystalline systems.

PAPRECA (in its initial version) is a parallelized software (uses the MPI protocol) that can
capture four distinct classes of predefined transition events: 1) reactions (bonding and scission),
2) deposition (of molecules and atoms), 3) diffusion, and 4) monoatomic desorption. Virtually
any system whose temporal evolution can be described by these atomic-scale processes can be
effectively simulated by PAPRECA. Example applications of PAPRECA include but are not limited
to: adsorption/desorption on catalytic surfaces, amorphous thin films (e.g., phosphate films,
solid electrolyte interphases, oxide layers), and modeling self-diffusion of gases. Furthermore,
PAPRECA allows for the extension of the source code to include other classes of transition events
(e.g., reaction chains).

For accurate simulations of molecular-level resolution, it becomes necessary to model elementary
steps of high frequency (1013-1014 Hz and above (Van Swygenhoven & Weertman, 2006))
such as atomic vibrations. These events cannot be explicitly included in the table of predefined
events because they would dominate the system, thus preventing the simulation from reaching
timescales beyond the limits of MD. This can be explained by considering that the higher
the rate of a predefined elementary step, the greater its kMC selection probability (Fichthorn
& Weinberg, 1991). To circumvent this issue, PAPRECA couples an off-lattice kMC solver
with a MD solver (LAMMPS (Thompson et al., 2022)) to enable hybrid off-lattice kMC/MD
simulations. Effectively, atomistic processes of elevated activation energies are captured via
the off-lattice kMC stage, while fast atomic-scale processes are treated by the MD stage.

py-MCMD (Barhaghi et al., 2022) is a different hybrid MC/MD workflow available in open-
source repositories. py-MCMD is a Python-based communication interface between the MC
software GOMC(Nejahi et al., 2019) and the MD code NAMD(Phillips et al., 2020). The
central difference between PAPRECA and py-MCMD is that the former implements a kMC
approach, while the latter utilizes a Metropolis Monte Carlo (MMC) scheme. Effectively, in the
kMC stage of PAPRECA predefined event probabilities are calculated based on their rates and an
elementary process is selected and executed to overcome a high energy barrier. On the other
hand, during the MC phase of py-MCMD, trial moves (e.g., rigid-body displacements/rotations,
intra-box swaps (M. G. Martin & Siepmann, 1999)) are attempted and accepted or rejected
based on the Metropolis acceptance criterion (Chen & Roux, 2015).

Scalability of PAPRECA
The scalability of PAPRECA was investigated by performing hybrid kMC/MD simulations on thin
films grown from the decomposition of lubricant additive tricresyl phosphate (TCP) molecules
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on an Fe(110) substrate. For further information regarding the system setup refer to the
PAPRECA documentation (Example Applications section) and our previous study (Ntioudis et
al., 2023).

Two independent scalability tests were performed. The first scalability test was conducted
locally, on a personal computer (CPU: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz, RAM:
128 Gb DDR4 @ 3200 MHz). Four runs were performed with 1, 4, 9, and 16 MPI processes,
respectively. The local tests simulated 1000 PAPRECA steps, with a PAPRECA step comprising a
kMC stage where a predefined event is executed, followed by an MD stage where the system
is relaxed. The second scalability test was performed on the CX3 cluster managed by the
Research Computing Service at Imperial College London (CPU: 2xAMD EPYC 7742 with 128
cores per node, RAM: 1TB per node, interconnect: 100GbE ethernet). This scalability test
was conducted with the same parameters as the local one but with a different number of
total PAPRECA steps (i.e., 9000 instead of 1000). Also, five runs were performed with 1, 4, 16,
64, and 144 MPI processes. Since the phosphate thin film grew along the z-direction of the
simulation box, an NxNx1 processor grid (along the x-, y-, and z-directions, respectively) was
utilized for all local and HPC tests. Figure 1 illustrates the results of both tests:

Figure 1: Hybrid kMC/MD scalability tests of PAPRECA for TCP on Fe(110) conducted on a workstation
(left) and on the CX3 cluster at Imperial College. (right).

Where the speedup value of N MPI processes was calculated as 𝑡𝑁 = 𝑇1
𝑇𝑁

, with 𝑇1 being the
total walltime of 1 MPI process. For this specific system (i.e., phosphates example), it can
be observed that the kMC stage does not scale as effectively as the MD stage (performed in
LAMMPS). Nonetheless, the total speedup (i.e., combined kMC and MD) of a hybrid PAPRECA

run is comparable to the MD stage speedup. This can be justified by the fact that the kMC
stages require significantly less CPU time than the MD stages, regardless of the number of
MPI processes. For instance, the total walltimes of the kMC and MD stages of the 64 MPI
processes example (second scalability test on the CX3 cluster) were 0.226 and 2.71 hours,
respectively. Overall, improving the scalability of the kMC stage will be prioritized in the
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upcoming versions of PAPRECA.

Data availability
Scalability test data is available on our software repository (Ntioudis et al., 2024).
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