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Summary
STReNGTHS is an open-source Python package that provides a simple and intuitive interface for
designing models of discrete 3D heterogeneous reaction-diffusion systems and simulating their
trajectories. Different algorithms are available, both stochastic (exact or approximate solutions
of the associated master equation) and deterministic (numerical solutions of the corresponding
rate equations). The acronym stands for “Simulation and modeling Tool for REaction-
diffusion Networks in Graphs and Tridimensional Heterogeneous Systems” (STReNGTHS).
The simulation algorithms are interfaced through a general abstract interface, which makes it
easy to extend STReNGTHS with new algorithms and other features. It is implemented in
Python (standard library, Numpy (C. R. Harris et al., 2020) and Matplotlib (Hunter, 2007), as
well as pytest (Krekel et al., 2004) for unit testing) and C++ (standard C++11 or later), and
can be easily installed from the Python Package Index (PyPI, https://pypi.org) with (i.e.)

pip install strengths

Statement of need
Biology at the cell scale relies on complex networks of biochemical reactions, usually operating
across multiple membrane-associated as well as membrane-less compartments (i.e. plasma
membrane, cytoplasm, cellular organelles, stress granules, etc) and driven far from equilibrium
by highly regulated species, such as nucleotides (ATP/GTP), amino acids and different ions.
In order to understand the properties of such reaction-diffusion networks, and especially their
role in macroscopic emergent phenomena, convenient, reliable and efficient modeling and
simulation tools supporting heterogeneous systems are necessary. Moreover, the choice of the
simulation algorithm to be used may depend on the system: deterministic approaches such as
ODE integration (rate equations) are effective, but inappropriate for systems that are sensitive
to fluctuations, such as systems that operate with species present at low copy numbers
(e.g. certain enzymes, many mRNA species) and/or in tiny reaction volumes (i.e. within
mitochondria), for which stochastic methods should be preferred. This is why one needs to
have multiple, flexible approaches available. STReNGTHS provides an interface to simulate
reaction-diffusion systems and manipulate their trajectories, as well as full control and access
to the simulation algorithms themselves.

A reaction-diffusion system is represented by the RDSystem class. This defines a reaction-
diffusion network, which is a set of coupled chemical transformations represented by the
RDNetwork class, augmented with a physical space where chemical species may diffuse. The
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system space is discrete and consists of a 3D mesh of individual volume elements, which we
refer to as cells. It can be either a regular grid of cubic cells with uniform volumes, or an
arbitrary network of cells with different volumes, which can be obtained by coarse-graining a
cell grid.

In order to account for systems with different compartments, STReNGTHS implements the
system of reaction-diffusion environments, which allows the user to define different types
of cells (referred to as environments) with specific reactive and diffusive properties. Many
properties, such as the initial density of species, diffusion coefficients, or reaction occurrence,
can be defined environment-wise.

Importantly, species can be chemostatted, i.e. kept at a fixed, prescribed concentration during
the simulation, globally or only in specific environments or cells. Chemostatted species allow
one to model non-equilibrium conditions existing in living cells that are associated with chemical
potential baths, such as in the case of the tightly regulated cytoplasmic levels of ATP or ADP.

Figure 1: Definition of a simple reaction-diffusion system implementing an association reaction over 3
cells using the JSON/dictionary format. The rates used were: 𝑘+ = 1 M−1s−1, 𝑘− = 1 s−1.

In STReNGTHS, reaction-diffusion systems can be defined either using Python dictionaries or
through JSON input files, following a specific intuitive syntax, as shown in figure 1. Simulations
are handled by objects called simulation engines, which offer a general abstract interface for
simulation algorithms. The simulate function wraps the engine call to run the whole simulation
at once. The resulting system trajectory, which is the sequence of system states successively
sampled during the simulation and the corresponding sampling times, is stored in a RDTrajectory
object.

For now, STReNGTHS implements simulation engines for the original Gillespie algorithm (D. T.
Gillespie, 1977), the 𝜏-leap approximation to the Gillespie algorithm (D. Gillespie, 2001), and
the Euler Method, operating on both grid and graph spaces, with diffusion handled according
to the method described in Ref. (Bernstein, 2005) (with a slight adaptation for graph spaces).

STReNGTHS and similar tools
There already exist various computational tools to model and simulate complex reaction-
diffusion systems. Some of them are general-purpose tools, while others have been designed to
handle more specific systems. Existing simulation packages include:

• STEPS (Wils & De Schutter, 2009). This is a reaction-diffusion program interfaced
with Python, which uses the Gillespie algorithm. It handles simulations in geometries
composed of tetrahedral voxels with faces that can represent biological membranes (Wils
& De Schutter, 2009).

• ReaDDy (Hoffmann et al., 2019). This is a reaction-diffusion tool with a Python interface
that uses a particle-based approach. An especially interesting feature is that it can deal
with complex molecule geometries and reaction patterns, such as polymer dynamics
(Hoffmann et al., 2019). A Python interface is also available (Hoffmann et al., 2019).
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• MesoRD (Hattne et al., 2005). This is a tool that employs a stochastic approach based
on the Next Subvolume Method (Elf & Ehrenberg, 2004 December). The simulation
parameters are defined through XML script files, using the System Biology Markup
Language (SBML) format (Hattne et al., 2005). The software relies on Constructive
Solid Geometry (CSG) to define the different reaction-diffusion compartments (Hattne et
al., 2005). It comes with graphical (Windows) and command-line (Unix) user interfaces
(Hattne et al., 2005).

• BioNetGen (L. A. Harris et al., 2016). This is a modeling and simulation tool that
provides a rich scripting language with a rule-based approach (L. A. Harris et al., 2016).
Such an approach enables one to consider systems that may be difficult to apprehend with
methods requiring to define explicitly the full reaction network (such as polymerization)
(L. A. Harris et al., 2016). BioNetGen supports both deterministic and stochastic
methods (L. A. Harris et al., 2016).

Compared to the aforementioned tools, STReNGTHS is more rudimentary and only handles
reaction networks with explicitly defined species and reactions, as opposed to pattern-based
approaches or rule-based approaches used by tools such as BioNetGen (L. A. Harris et al.,
2016). Still, it allows one to build in a very intuitive and user-friendly way simulations able to
describe a vast range of complex systems.

So far, as opposed to Readdy, STReNGTHS only implements non-particle-based methods,
similar to those proposed by the other software. However, rather than proposing only one
all-purpose fitting method, STReNGTHS’s approach is to provide a collection of various
simulation methods, leaving the choice at the user’s discretion. Moreover, simulation features
can be easily extended using the simulation engine interface. In fact, STReNGTHS has been
designed to be extended easily.

One of STReNGTHS’ key features is the use of reaction-diffusion environments, which make it
easy to design extremely rich system landscapes, i.e. featuring plenty of different compartments
of arbitrary shape that encode physical and chemical segregation.

The use of a JSON/dictionary syntax for the definition of reaction-diffusion systems brings
readability and simplicity to the workflow.

Examples
For the first example, let us consider a simple model of signal transduction, where some
extracellular chemical signal is sensed by a cell, which triggers the production of a second
messenger, as well as the scavenging of the signal species. The network is designed as follows:
The extracellular ligand 𝐿 can bind to a plasma membrane receptor 𝑅 to form a complex 𝐶.
This species catalyzes the conversion of the inactive second messenger 𝑋 to its active form, 𝑌.
The complex 𝐶 is directly converted back into 𝑅, which accounts for the internalization of the
complex, the degradation of the ligand and the full recycling of the receptor. No degradation of
the receptors (either through the proteasomes or lysosomes) is assumed for simplicity, although
it would be straightforward to add additional reactions to implement such reaction channels
(see Fig. 2 a,c). The model features 3 reaction-diffusion environments, “ext”, “cyt” and
“mmb”, accounting, respectively, for the extracellular space, the cytoplasm and the interface
between these two compartments containing the plasma membrane. We use two different
system spaces. The first one is a 26 × 26 cell grid consisting of 1 𝜇m3 cubic cells, while the
second one is a coarse-grained version of the first that contains only 85 nodes/cells (for 676
cells in the grid) (Fig. 2 b). The trajectory of the system state is simulated, both for the fully
detailed grid and for its coarse-grained version, using the 𝜏-leap algorithm (D. Gillespie, 2001)
and the Euler method, for a total duration of 1 hour using a time step of 1 ms. The global
trajectory of 𝑌 as well as its distribution at 𝑡 = 0, 100, 1500 s are plotted in Fig. 2 (f, g).
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Figure 2: Example of simulation with STReNGTHS implementing a simple model of signal transduction
by a single cell. (a) Schematic representation of the system. (b) Layout of the two different system
spaces used, the 26 × 26 cell grid (left) and its coarse-grained graph version (right). (c) Set of coupled
stoichiometric equations that compose the reaction network. (d) Diffusion coefficients of individual
species in the different environments. (e) Initial densities of each species in the different environments. (f)
Time course of the transduced signal: Global trajectory of 𝑌 obtained from the simulation using the 𝜏-leap
algorithm (D. Gillespie, 2001) and the Euler method using both system spaces (see b). (g) Distribution
of the 𝑌 species at different times from the 𝜏-leap simulations. The rates used were: 𝐿 + 𝑅 → 𝐶:
𝑘1 = 0.5 nM−1s−1. 𝐶 → 𝐿+ 𝑅: 𝑘−1 = 0.5 × 10−3 s−1. 𝐶 → 𝑅: 𝑘2 = 10−2 s−1. 𝐶 +𝑋 → 𝐶 + 𝑌:
𝑘3 = 1 𝜇M−1s−1. 𝐶 + 𝑌 → 𝐶 +𝑋: 𝑘−3 = 10−4 𝜇M−1s−1. 𝑌 → 𝑋, 𝑘4 = 10−2 s−1. The diffusion
coefficients for the different species were: 𝐷𝐿 = 100 𝜇m2s−1 (order of magnitude for the diffusion
coefficient of a protein around 30 kDa in water (Milo & Phillips, 2015)), 𝐷𝑅 = 𝐷𝐶 = 0.1 𝜇m2s−1

(order of magnitude for the diffusion coefficient of a transmembrane protein in a compartmented plasma
membrane(Fujiwara et al., 2016)), 𝐷𝑋 = 𝐷𝑌 = 10 𝜇m2s−1 (order of magnitude for the diffusion
coefficient of a protein around 30 kDa in the cytosol (Milo & Phillips, 2015)).

For the second example, we consider a pattern-forming reaction-diffusion network based on
the one used in the documentation of the package (Fillion & Piazza, 2024), similar to the
Gray-Scott model and related reaction-diffusion schemes (McGough & Riley, 2004) (Ruijgrok
& Ruijgrok, 1997), that features two competitive auto-catalytic species 𝐴 and 𝐵 mutually
converting into each other (Fig. 3 (a)). We first simulate the evolution of the system in 1
dimension using the 𝜏-leap algorithm (D. Gillespie, 2001). The corresponding spatiotemporal
evolution of 𝐴 concentration over time is reported in Fig. 3 (c) as a 2D heat map. It can be
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observed how the system, starting from a homogeneous state, progressively builds up spatial
reaction-diffusion patterns. We also simulate a square 100× 100 cell system and plot the final
distribution of 𝐴, so that the shape of the pattern can be appreciated directly (Fig. 3 (d)).

Next, we apply this model to two systems with higher complexity, where the synthesis rates of 𝐴
and 𝐵 vary depending on the region (Fig. 3 (b), (e), (g)). The first one (Fig. 3 (e)) represents
pattern formation at the surface of a sphere, while the second one (Fig. 3 (g)) illustrates
a similar phenomenon of pattern formation in a domain that takes the shape of an animal.
Panels (f) and (h) in Fig. 3 demonstrate the evolution of both systems (levels of the 𝐴 species)
in time, highlighting the progressive evolution of the spatial patterns that form as a result
of the subtle combination of the underlying auto-catalytic process with the inhomogeneous
reaction landscape. Figure 3 (i) additionally illustrates how, due to the stochastic nature of
the process, different patterns may arise from the same homogeneous initial state.
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Figure 3: Example of simulations of different pattern-forming reaction-diffusion systems at increasing
levels of environmental complexity. All simulations are performed with the 𝜏-leap algorithm (D. Gillespie,
2001). (a) Description of the chemical reactions and associated rates. This reaction-diffusion network is
similar to the Gray-Scott model (McGough & Riley, 2004) and the one studied by Ruijgrok and Ruijgrok
(Ruijgrok & Ruijgrok, 1997). Other examples using a similar reaction-diffusion network can be found
in the documentation of the package (Fillion & Piazza, 2024). (c) Evolution of a 1D system in time
and space. (d) Pseudo-stationary state of a 2D system. (e) Reaction-diffusion environments for the two
inhomogeneous systems. (b) Layout of a 3D system where the patterns are forming at the surface of
a sphere. (f) States of the 3D system described at different time points along a stochastic trajectory
(concentration of the 𝐴 species). (g) Layout of a 2D system mimicking the shape of an animal. (h)
States of the system (distribution of the 𝐴 species) at different time points from one simulation. (i)
Patterns formed at 𝑡 = 3500.0 h resulting from 3 different stochastic simulations. The rates used were:
∅ → 𝐴: 𝑘1 = 10−4 molecules×𝜇m−3×h−1 in 𝑎 and 𝑐 and 1.05 × 10−4 molecules×𝜇m−3×h−1 in 𝑏.
𝐴 → ∅: 𝑘−1 = 10−3 h−1. ∅ → 𝐵: 𝑘2 = 10−4 molecules×𝜇m−3×h−1 in 𝑎 and 𝑏 and 1.05 × 10−4

molecules×𝜇m−3×h−1 in 𝑐. 𝐵 → ∅: 𝑘−2 = 0.001 h−1. 𝐴+2𝐵 → 3𝐵: 𝑘3 = 1 molecules−2×𝜇m6×h−1.
𝐵 + 2𝐴 → 3𝐴: 𝑘4 = 1 molecules−2 × 𝜇m6×h−1. The diffusion coefficients for the different species
were: 𝐷𝐴 = 𝐷𝐵 = 80 𝜇m2h−1. Reaction and diffusion rate constants are all 0 in compartment “ext”.

Source code and documentation
STReNGTHS’s source code and documentation are distributed under the terms of the MIT
license and can be found on the dedicated GitHub repository:

https://github.com/ThibaultFillion/strengths

The documentation includes tutorials and an API reference. The tutorials demonstrate how

Fillion, & Piazza. (2024). STReNGTHS, a Python package to model and simulate complex reaction-diffusion systems. Journal of Open Source
Software, 9(97), 6495. https://doi.org/10.21105/joss.06495.

6

https://github.com/ThibaultFillion/strengths
https://doi.org/10.21105/joss.06495


to define reaction-diffusion systems by taking advantage of STReNGTHS’s different features
(environments, chemostats, boundary conditions, etc.) as well as how to carry out simulations
and post-process the trajectories. The API reference documents the exposed functions and
classes.

Conclusions and perspectives
STReNGTHS is a new integrated and flexible platform for modeling and simulation of inhomo-
geneous reaction-diffusion systems, which aims to provide an extensible collection of stochastic
and deterministic simulation engines. It has been designed to be easily integrated with new
tools and we do hope it will continue to grow. Perspectives for future developments include:

• developing CPU-GPU massively parallel implementations of the existing simulation
methods,

• implementing methods with dynamically adaptive time steps,
• implementing methods combining stochastic and deterministic approaches for faster

simulations, and
• developing a GUI that would facilitate the design of the reaction-diffusion system layouts.
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