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Summary
Polyhedral gravity models are essential for modeling the gravitational field of irregular bodies,
such as asteroids and comets. We present an open-source C++ library for the efficient,
parallelized computation of a polyhedral gravity model following the line integral approach
by Tsoulis (Tsoulis, 2012). A slim, easy-to-use Python interface using pybind11 accompanies
the library. The library is particularly focused on delivering high performance and scalability,
which we achieve through vectorization and parallelization with xsimd and thrust, respectively.
For example, the average evaluation of 1 out of 1000 randomly sampled points took 253
microseconds on a M1 Pro chip for the mesh of Eros consisting of 7374 vertices and 14744
faces (see downscaled to 10% in Figure 1, Gaskell, 2008). The library supports many common
formats, such as .stl, .off, .ply, .mesh and tetgen’s .node and .face (Hang, 2015). These
properties make the application of this implementation straightforward to (re-)use in an arbitrary
context.

Figure 1: Downscaled mesh of (433) Eros to 10% of its original vertices and faces.

Statement of Need
The complex gravitational fields of irregular bodies, such as asteroids and comets, are often
modeled using polyhedral gravity models since alternative approaches like mascon models or
spherical harmonics struggle with these bodies’ irregular geometry. The spherical harmonics
approach struggles with convergence close to the surface (Šprlák & Han, 2021), whereas
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mascon models require a computationally expensive amount of mascons (point masses of which
the target body comprises) to model fine-granular surface geometry (Wittick & Russell, 2017).

In contrast, polyhedral gravity models provide an analytic solution for the computation of the
gravitational potential, acceleration (and second derivative) given a mesh of the body (Tsoulis,
2012; Tsoulis & Gavriilidou, 2021) with the only assumption of homogeneous density. The
computation of the gravitational potential and acceleration is a computationally expensive
task, especially for large meshes, which can however benefit from parallelization either over
computed target points for which we seek potential and acceleration or over the mesh. Thus,
a high-performance implementation of a polyhedral gravity model is desirable.

While some research code for these models exists, they are not focused on usability and are lim-
ited to FORTRAN1 and proprietary software like MATLAB2. There is a lack of well-documented,
actively maintained open-source implementations, particularly in modern programming lan-
guages, and with a focus on scalability and performance.

This circumstance and the fact that polyhedral models are often used in studying gravitational
fields, e.g., for Eros (Zhang et al., 2010), or as a reference for creating new neural models
(Martin & Schaub, 2023) make an easy-to-install implementation necessary.

The presented software has already seen application in several research works. It has been used
to optimize trajectories around the highly irregular comet 67P/Churyumov-Gerasimenko with
the goal of maximizing the gravity signal (Maråk et al., 2023) using pygmo (Biscani & Izzo,
2020). In the context of that work, the presented implementation was extended to enable
caching and even serialization to persistent memory on the C++ side. A change that enables
researchers to, e.g., efficiently propagate an orbit since the computation points can be given
apiece and do not need to be all known from the beginning.

Further, it has been used to study the effectiveness of so-called neural density fields (Izzo &
Gómez, 2022), where it served as ground truth to (pre-)train neural networks representing the
density distribution of an arbitrarily shaped body (Schuhmacher et al., 2023).

Thus, this model is highly versatile overall due to its easy-to-use API. It can be used in a
wide range of applications, especially due to the availability on major platforms like Windows,
macOS, and Linux for ARM64 and x86_64. We hope it will enable further research in the
field, especially related to recent machine-learning techniques, which typically rely on Python
implementations.

Polyhedral Model
On a mathematical level, the implemented model follows the line integral approach by Petrović
(Petrović, 1996) as refined by Tsoulis and Petrović (Tsoulis & Petrović, 2001). The associated
student report gives a comprehensive description of the mathematical foundations of the model
and how the gravitational triple integral is resolved to a double summation over the faces and
line segments of a polyhedron (Schuhmacher, 2022).

Implementation-wise, it makes use of the inherent parallelization opportunity of the approach
as it iterates over the mesh elements. This parallelization is achieved via thrust, which allows
utilizing OpenMP and Intel TBB. On a finer scale, individual, costly operations have been
investigated, and, e.g., the arctan operations have been vectorized using xsimd. On the
application side, the user can choose between the functional interface for evaluating the full
gravity tensor or the object-oriented GravityEvaluable, providing the same functionality while
implementing a caching mechanism to avoid recomputing mesh properties that can be shared
between multipoint evaluation, such as the face normals.

1https://software.seg.org/2012/0001/index.html, last accessed: 12.09.2022
2https://github.com/Gavriilidou/GPolyhedron, last accessed: 28.03.2024
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Figure 2: UML Component Diagram of the implementation. External dependencies are depicted in gray.
Components of the polyhedral gravity model are colored in blue and green.

Extensive tests using GoogleTest for the C++ side and pytest for the Python interface are
employed via GitHub Actions to ensure the (continued) correctness of the implementation.

Figure 2 summarizes the modular implementation and its dependencies in a UML component
diagram.

Installation & Contribution

The library is available on GitHub3 and can be installed with pip (PyPi)4 or from conda5.
Build instructions using CMake are provided in the repository. The library is licensed under a
GPL license.

The project is open to contributions via pull requests, with instructions on how to contribute
provided in the repository.

Usage Instructions
We provide detailed usage instructions in the technical documentation on the project’s GitHub
Pages6. Additionally, a minimal working example is given in the repository readme, and more
extensive examples, including a walkthrough over the available options as a Jupyter notebook7.

3https://github.com/esa/polyhedral-gravity-model
4https://pypi.org/project/polyhedral-gravity/
5https://anaconda.org/conda-forge/polyhedral-gravity-model
6https://esa.github.io/polyhedral-gravity-model
7https://github.com/esa/polyhedral-gravity-model/blob/main/script/polyhedral-gravity.ipynb
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