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Summary
A Julia language (Bezanson et al., 2017) package providing practical and modular implemen-
tation of “Calibrate, Emulate, Sample” (Cleary et al., 2021), hereafter CES, an accelerated
workflow for obtaining model parametric uncertainty is presented. This is also known as
Bayesian inversion or uncertainty quantification. To apply CES one requires a computer model
(written in any programming language) dependent on free parameters, a prior distribution
encoding some prior knowledge about the distribution over the free parameters, and some
data with which to constrain this prior distribution. The pipeline has three stages, most easily
explained in reverse:

1. The goal of the workflow is to draw samples (Sample) from the Bayesian posterior
distribution, that is, the prior distribution conditioned on the observed data,

2. To accelerate and regularize sampling we train statistical emulators to represent the
user-provided parameter-to-data map (Emulate),

3. The training points for these emulators are generated by the computer model, and
selected adaptively around regions of high posterior mass (Calibrate).

We describe CES as an accelerated workflow, as it is often able to use dramatically fewer
evaluations of the computer model when compared with applying sampling algorithms, such as
Markov chain Monte Carlo (MCMC), directly.

• Calibration tools: We recommend choosing adaptive training points with Ensemble
Kalman methods such as EKI (Iglesias et al., 2013) and its variants (Huang et al.,
2022); and CES provides explicit utilities from the codebase EnsembleKalmanProcesses.jl
(Dunbar, Lopez-Gomez, et al., 2022).

• Emulation tools: CES integrates any statistical emulator, currently implemented are
Gaussian Processes (GP) (Williams & Rasmussen, 2006), explicitly provided through
packages SciKitLearn.jl (Pedregosa et al., 2011) and GaussianProcesses.jl (Fairbrother
et al., 2022), and Random Features (Liu et al., 2022; Rahimi et al., 2007; Rahimi &
Recht, 2008), explicitly provided through RandomFeatures.jl that can provide additional
flexibility and scalability, particularly in higher dimensions.

• Sampling tools: The regularized and accelerated sampling problem is solved with MCMC,
and CES provides the variants of Random Walk Metropolis (Metropolis et al., 1953;
Sherlock et al., 2010), and preconditioned Crank-Nicholson (Cotter et al., 2013), using
APIs from Turing.jl. Some regular emulator mean functions are differentiable, and
including accelerations of derivative-based MCMC into CES, (e.g., NUTS, Hoffman et
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al., 2014; Barker, Livingstone & Zanella, 2022); is an active direction of work.

To highlight code accessibility, we also provide a suite of detailed scientifically-inspired examples,
with documentation that walks users through some use cases. Such use cases not only
demonstrate the capability of the CES pipeline, but also teach users about typical interface
and workflow experience.

Statement of need
Computationally expensive computer codes for predictive modelling are ubiquitous across
science and engineering disciplines. Free parameter values that exist within these modelling
frameworks are typically constrained by observations to produce accurate and robust predictions
about the system they are approximating numerically. In a Bayesian setting, this is viewed
as evolving an initial parameter distribution (based on prior information) with the input of
observed data, to a more informative data-consistent distribution (posterior). Unfortunately,
this task is intensely computationally expensive, commonly requiring over 105 evaluations of
the expensive computer code (e.g., Random Walk Metropolis), with accelerations relying on
intrusive model information, such as a derivative of the parameter-to-data map. CES is able
to approximate and accelerate this process in a non-intrusive fashion and requiring only on the
order of 102 evaluations of the original computer model. This opens the doors for quantifying
parametric uncertainty for a class of numerically intensive computer codes that has previously
been unavailable.

State of the field
In Julia there are a few tools for performing non-accelerated uncertainty quantification, from
classical sensitivity analysis approaches, for example, UncertaintyQuantification.jl, GlobalSen-
sitivity.jl (Dixit & Rackauckas, 2022), and MCMC, for example, Mamba.jl or Turing.jl. For
computational efficiency, ensemble methods also provide approximate sampling, (Dunbar,
Lopez-Gomez, et al., 2022; e.g., the Ensemble Kalman Sampler Garbuno-Inigo et al., 2020),
though these only provide Gaussian approximations of the posterior.

Accelerated uncertainty quantification tools also exist for the related approach of Approximate
Bayesian Computation (ABC), for example, GpABC (Tankhilevich et al., 2020) or Approx-
Bayes.jl; these tools both approximately sample from the posterior distribution. In ABC, this
approximation comes from bypassing the likelihood that is usually required in sampling methods,
such as MCMC. Instead, the goal of ABC is to replace the likelihood with a scalar-valued
sampling objective that compares model and data. In CES, the approximation comes from
learning the parameter-to-data map, then following this it calculates an explicit likelihood and
uses exact sampling via MCMC. Some ABC algorithms also make use of statistical emulators
to further accelerate sampling (GpABC). Although flexible, ABC encounters challenges due to
the subjectivity of summary statistics and distance metrics, that may lead to approximation
errors particularly in high-dimensional settings (Nott et al., 2018). CES is more restrictive due
to use of an explicit Gaussian likelihood, but also leverages this structure to deal with high
dimensional data.

Several other tools are available in other languages for a purpose of accelerated learning of the
posterior distribution or posterior sampling. Two such examples, written in Python, approximate
the log-posterior distribution directly with a Gaussian process: PyVBMC (Huggins et al., 2023)
additionaly uses variational approximations to calculate the normalization constant, and GPry
(Gammal et al., 2023), which iteratively trains the GP with an active training point selection
algorithm. Such algorithms are distinct from CES, which approximates the parameter-to-data
map with the Gaussian process, and advocates ensemble Kalman methods to select training
points.
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A simple example from the code documentation
We sketch an end-to-end example of the pipeline, with fully-detailed walkthrough given in the
online documentation.

We have a model of a sinusoidal signal that is a function of parameters 𝜃 = (𝐴, 𝑣), where 𝐴
is the amplitude of the signal and 𝑣 is vertical shift of the signal

𝑓(𝐴, 𝑣) = 𝐴 sin(𝜙 + 𝑡) + 𝑣, ∀𝑡 ∈ [0, 2𝜋].

Here, 𝜙 is the random phase of each signal. The goal is to estimate not just point estimates
of the parameters 𝜃 = (𝐴, 𝑣), but entire probability distributions of them, given some noisy
observations. We will use the range and mean of a signal as our observable:

𝐺(𝜃) = [range(𝑓(𝜃)),mean(𝑓(𝜃))]

Then, our noisy observations, 𝑦𝑜𝑏𝑠, can be written as:

𝑦𝑜𝑏𝑠 = 𝐺(𝜃†) +𝒩(0, Γ)

where Γ is the observational covariance matrix. We will assume the noise to be independent
for each observable, giving us a diagonal covariance matrix.

Figure 1: The true and observed range and mean.

For this experiment 𝜃† = (𝐴†, 𝑣†) = (3.0, 7.0), and the noisy observations are displayed in
blue in Figure 1.

We define prior distributions on the two parameters. For the amplitude, we define a prior with
mean 2 and standard deviation 1. It is additionally constrained to be nonnegative. For the
vertical shift we define a prior with mean 0 and standard deviation 5.

const PD = CalibrateEmulateSample.ParameterDistributions

prior_u1 = PD.constrained_gaussian("amplitude", 2, 1, 0, Inf)

prior_u2 = PD.constrained_gaussian("vert_shift", 0, 5, -Inf, Inf)

prior = PD.combine_distributions([prior_u1, prior_u2])
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Figure 2: Marginal distributions of the prior

The prior is displayed in Figure 2.

We now adaptively find input-output pairs from our map 𝐺 in a region of interest using an
inversion method (an ensemble Kalman process). This is the Calibrate stage, and iteratively
generates parameter combinations, that refine around a region of high posterior mass.

const EKP = CalibrateEmulateSample.EnsembleKalmanProcesses

N_ensemble = 10

N_iterations = 5

initial_ensemble = EKP.construct_initial_ensemble(prior, N_ensemble)

ensemble_kalman_process = EKP.EnsembleKalmanProcess(

initial_ensemble, y_obs, Γ, EKP.Inversion();

)

for i in 1:N_iterations

params_i = EKP.get_phi_final(prior, ensemble_kalman_process)

G_ens = hcat([G(params_i[:, i]) for i in 1:N_ensemble]...)

EKP.update_ensemble!(ensemble_kalman_process, G_ens)

end

Figure 3: The resulting ensemble from a calibration.

The adaptively refined training points from EKP are displayed in Figure 3. We now build an
basic Gaussian process emulator from the GaussianProcesses.jl package to emulate the map 𝐺
using these points.

const UT = CalibrateEmulateSample.Utilities

const EM = CalibrateEmulateSample.Emulators
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input_output_pairs = UT.get_training_points(

ensemble_kalman_process, N_iterations,

)

gppackage = EM.GPJL()

gauss_proc = EM.GaussianProcess(gppackage, noise_learn = false)

emulator = EM.Emulator(

gauss_proc, input_output_pairs, normalize_inputs = true, obs_noise_cov = Γ,

)

EM.optimize_hyperparameters!(emulator) # train the emulator

Figure 4: The Gaussian process emulator of the range and mean maps, trained on the re-used calibration
pairs

We evaluate the mean of this emulator on a grid, and also show the value of the true 𝐺 at
training point locations in Figure 4.

We can then sample with this emulator using an MCMC scheme. We first choose a good
step size (an algorithm parameter) by running some short sampling runs (of length 2,000
steps). Then we run the 100,000 step sampling run to generate samples of the joint posterior
distribution.

const MC = CalibrateEmulateSample.MarkovChainMonteCarlo

mcmc = MC.MCMCWrapper(

MC.RWMHSampling(), y_obs, prior, emulator,

)

# choose a step size

new_step = MC.optimize_stepsize(

mcmc; init_stepsize = 0.1, N = 2000,

)

# Now begin the actual MCMC

chain = MC.sample(

mcmc, 100_000; stepsize = new_step, discard_initial = 2_000,

)

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

5

https://doi.org/10.21105/joss.06372


Figure 5: The joint posterior distribution histogram

A histogram of the samples from the CES algorithm is displayed in Figure 5. We see that the
posterior distribution contains the true value (3.0, 7.0) with high probability.

Research projects using the package
Some research projects that use this codebase, or modifications of it, are

• (Dunbar et al., 2021)
• (Bieli et al., 2022)
• (Hillier, 2022)
• (Howland et al., 2022)
• (Dunbar, Howland, et al., 2022)
• (Mansfield & Sheshadri, 2022)
• (King et al., 2023)
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