
CalibrateEmulateSample.jl: Accelerated Parametric
Uncertainty Quantification
Oliver R. A. Dunbar 1¶, Melanie Bieli2, Alfredo Garbuno-Iñigo 3, Michael
Howland 4, Andre Nogueira de Souza 5, Laura Anne Mansfield 6,
Gregory L. Wagner 5, and N. Efrat-Henrici1

1 Geological and Planetary Sciences, California Institute of Technology 2 Swiss Re Ltd. 3 Department of
Statistics, Mexico Autonomous Institute of Technology 4 Civil and Environmental Engineering,
Massachusetts Institute of Technology 5 Earth, Atmospheric, and Planetary Sciences, Massachusetts
Institute of Technology 6 Earth System Science, Doerr School of Sustainability, Stanford University ¶
Corresponding author

DOI: 10.21105/joss.06372

Software
• Review
• Repository
• Archive

Editor: Stefan Appelhoff
Reviewers:

• @matt-graham
• @Vaibhavdixit02
• @nluetts

Submitted: 13 January 2024
Published: 06 May 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
A Julia language (Bezanson et al., 2017) package providing practical and modular implemen-
tation of “Calibrate, Emulate, Sample” (Cleary et al., 2021), hereafter CES, an accelerated
workflow for obtaining model parametric uncertainty is presented. This is also known as
Bayesian inversion or uncertainty quantification. To apply CES one requires a computer model
(written in any programming language) dependent on free parameters, a prior distribution
encoding some prior knowledge about the distribution over the free parameters, and some
data with which to constrain this prior distribution. The pipeline has three stages, most easily
explained in reverse:

1. The goal of the workflow is to draw samples (Sample) from the Bayesian posterior
distribution, that is, the prior distribution conditioned on the observed data,

2. To accelerate and regularize sampling we train statistical emulators to represent the
user-provided parameter-to-data map (Emulate),

3. The training points for these emulators are generated by the computer model, and
selected adaptively around regions of high posterior mass (Calibrate).

We describe CES as an accelerated workflow, as it is often able to use dramatically fewer
evaluations of the computer model when compared with applying sampling algorithms, such as
Markov chain Monte Carlo (MCMC), directly.

• Calibration tools: We recommend choosing adaptive training points with Ensemble
Kalman methods such as EKI (Iglesias et al., 2013) and its variants (Huang et al.,
2022); and CES provides explicit utilities from the codebase EnsembleKalmanProcesses.jl
(Dunbar, Lopez-Gomez, et al., 2022).

• Emulation tools: CES integrates any statistical emulator, currently implemented are
Gaussian Processes (GP) (Williams & Rasmussen, 2006), explicitly provided through
packages SciKitLearn.jl (Pedregosa et al., 2011) and GaussianProcesses.jl (Fairbrother
et al., 2022), and Random Features (Liu et al., 2022; Rahimi et al., 2007; Rahimi &
Recht, 2008), explicitly provided through RandomFeatures.jl that can provide additional
flexibility and scalability, particularly in higher dimensions.

• Sampling tools: The regularized and accelerated sampling problem is solved with MCMC,
and CES provides the variants of Random Walk Metropolis (Metropolis et al., 1953;
Sherlock et al., 2010), and preconditioned Crank-Nicholson (Cotter et al., 2013), using
APIs from Turing.jl. Some regular emulator mean functions are differentiable, and
including accelerations of derivative-based MCMC into CES, (e.g., NUTS, Hoffman et

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

1

https://orcid.org/0000-0001-7374-0382
https://orcid.org/0000-0003-3279-619X
https://orcid.org/0000-0002-2878-3874
https://orcid.org/0000-0002-9906-7824
https://orcid.org/0000-0002-6285-6045
https://orcid.org/0000-0001-5317-2445
https://doi.org/10.21105/joss.06372
https://github.com/openjournals/joss-reviews/issues/6372
https://github.com/CliMA/CalibrateEmulateSample.jl
https://doi.org/10.5281/zenodo.10946875
https://stefanappelhoff.com/
https://orcid.org/0000-0001-8002-0877
https://github.com/matt-graham
https://github.com/Vaibhavdixit02
https://github.com/nluetts
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.7141158
https://turinglang.org/
https://doi.org/10.21105/joss.06372

al., 2014; Barker, Livingstone & Zanella, 2022); is an active direction of work.

To highlight code accessibility, we also provide a suite of detailed scientifically-inspired examples,
with documentation that walks users through some use cases. Such use cases not only
demonstrate the capability of the CES pipeline, but also teach users about typical interface
and workflow experience.

Statement of need
Computationally expensive computer codes for predictive modelling are ubiquitous across
science and engineering disciplines. Free parameter values that exist within these modelling
frameworks are typically constrained by observations to produce accurate and robust predictions
about the system they are approximating numerically. In a Bayesian setting, this is viewed
as evolving an initial parameter distribution (based on prior information) with the input of
observed data, to a more informative data-consistent distribution (posterior). Unfortunately,
this task is intensely computationally expensive, commonly requiring over 105 evaluations of
the expensive computer code (e.g., Random Walk Metropolis), with accelerations relying on
intrusive model information, such as a derivative of the parameter-to-data map. CES is able
to approximate and accelerate this process in a non-intrusive fashion and requiring only on the
order of 102 evaluations of the original computer model. This opens the doors for quantifying
parametric uncertainty for a class of numerically intensive computer codes that has previously
been unavailable.

State of the field
In Julia there are a few tools for performing non-accelerated uncertainty quantification, from
classical sensitivity analysis approaches, for example, UncertaintyQuantification.jl, GlobalSen-
sitivity.jl (Dixit & Rackauckas, 2022), and MCMC, for example, Mamba.jl or Turing.jl. For
computational efficiency, ensemble methods also provide approximate sampling, (Dunbar,
Lopez-Gomez, et al., 2022; e.g., the Ensemble Kalman Sampler Garbuno-Inigo et al., 2020),
though these only provide Gaussian approximations of the posterior.

Accelerated uncertainty quantification tools also exist for the related approach of Approximate
Bayesian Computation (ABC), for example, GpABC (Tankhilevich et al., 2020) or Approx-
Bayes.jl; these tools both approximately sample from the posterior distribution. In ABC, this
approximation comes from bypassing the likelihood that is usually required in sampling methods,
such as MCMC. Instead, the goal of ABC is to replace the likelihood with a scalar-valued
sampling objective that compares model and data. In CES, the approximation comes from
learning the parameter-to-data map, then following this it calculates an explicit likelihood and
uses exact sampling via MCMC. Some ABC algorithms also make use of statistical emulators
to further accelerate sampling (GpABC). Although flexible, ABC encounters challenges due to
the subjectivity of summary statistics and distance metrics, that may lead to approximation
errors particularly in high-dimensional settings (Nott et al., 2018). CES is more restrictive due
to use of an explicit Gaussian likelihood, but also leverages this structure to deal with high
dimensional data.

Several other tools are available in other languages for a purpose of accelerated learning of the
posterior distribution or posterior sampling. Two such examples, written in Python, approximate
the log-posterior distribution directly with a Gaussian process: PyVBMC (Huggins et al., 2023)
additionaly uses variational approximations to calculate the normalization constant, and GPry
(Gammal et al., 2023), which iteratively trains the GP with an active training point selection
algorithm. Such algorithms are distinct from CES, which approximates the parameter-to-data
map with the Gaussian process, and advocates ensemble Kalman methods to select training
points.

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

2

https://zenodo.org/records/10149017
https://github.com/brian-j-smith/Mamba.jl
https://turinglang.org/
https://github.com/marcjwilliams1/ApproxBayes.jl?tab=readme-ov-file
https://github.com/marcjwilliams1/ApproxBayes.jl?tab=readme-ov-file
https://github.com/acerbilab/pyvbmc
https://github.com/jonaselgammal/GPry
https://doi.org/10.21105/joss.06372

A simple example from the code documentation
We sketch an end-to-end example of the pipeline, with fully-detailed walkthrough given in the
online documentation.

We have a model of a sinusoidal signal that is a function of parameters 𝜃 = (𝐴, 𝑣), where 𝐴
is the amplitude of the signal and 𝑣 is vertical shift of the signal

𝑓(𝐴, 𝑣) = 𝐴 sin(𝜙 + 𝑡) + 𝑣, ∀𝑡 ∈ [0, 2𝜋].

Here, 𝜙 is the random phase of each signal. The goal is to estimate not just point estimates
of the parameters 𝜃 = (𝐴, 𝑣), but entire probability distributions of them, given some noisy
observations. We will use the range and mean of a signal as our observable:

𝐺(𝜃) = [range(𝑓(𝜃)),mean(𝑓(𝜃))]

Then, our noisy observations, 𝑦𝑜𝑏𝑠, can be written as:

𝑦𝑜𝑏𝑠 = 𝐺(𝜃†) +𝒩(0, Γ)

where Γ is the observational covariance matrix. We will assume the noise to be independent
for each observable, giving us a diagonal covariance matrix.

Figure 1: The true and observed range and mean.

For this experiment 𝜃† = (𝐴†, 𝑣†) = (3.0, 7.0), and the noisy observations are displayed in
blue in Figure 1.

We define prior distributions on the two parameters. For the amplitude, we define a prior with
mean 2 and standard deviation 1. It is additionally constrained to be nonnegative. For the
vertical shift we define a prior with mean 0 and standard deviation 5.

const PD = CalibrateEmulateSample.ParameterDistributions

prior_u1 = PD.constrained_gaussian("amplitude", 2, 1, 0, Inf)

prior_u2 = PD.constrained_gaussian("vert_shift", 0, 5, -Inf, Inf)

prior = PD.combine_distributions([prior_u1, prior_u2])

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

3

https://doi.org/10.21105/joss.06372

Figure 2: Marginal distributions of the prior

The prior is displayed in Figure 2.

We now adaptively find input-output pairs from our map 𝐺 in a region of interest using an
inversion method (an ensemble Kalman process). This is the Calibrate stage, and iteratively
generates parameter combinations, that refine around a region of high posterior mass.

const EKP = CalibrateEmulateSample.EnsembleKalmanProcesses

N_ensemble = 10

N_iterations = 5

initial_ensemble = EKP.construct_initial_ensemble(prior, N_ensemble)

ensemble_kalman_process = EKP.EnsembleKalmanProcess(

initial_ensemble, y_obs, Γ, EKP.Inversion();

)

for i in 1:N_iterations

params_i = EKP.get_phi_final(prior, ensemble_kalman_process)

G_ens = hcat([G(params_i[:, i]) for i in 1:N_ensemble]...)

EKP.update_ensemble!(ensemble_kalman_process, G_ens)

end

Figure 3: The resulting ensemble from a calibration.

The adaptively refined training points from EKP are displayed in Figure 3. We now build an
basic Gaussian process emulator from the GaussianProcesses.jl package to emulate the map 𝐺
using these points.

const UT = CalibrateEmulateSample.Utilities

const EM = CalibrateEmulateSample.Emulators

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

4

https://doi.org/10.21105/joss.06372

input_output_pairs = UT.get_training_points(

ensemble_kalman_process, N_iterations,

)

gppackage = EM.GPJL()

gauss_proc = EM.GaussianProcess(gppackage, noise_learn = false)

emulator = EM.Emulator(

gauss_proc, input_output_pairs, normalize_inputs = true, obs_noise_cov = Γ,

)

EM.optimize_hyperparameters!(emulator) # train the emulator

Figure 4: The Gaussian process emulator of the range and mean maps, trained on the re-used calibration
pairs

We evaluate the mean of this emulator on a grid, and also show the value of the true 𝐺 at
training point locations in Figure 4.

We can then sample with this emulator using an MCMC scheme. We first choose a good
step size (an algorithm parameter) by running some short sampling runs (of length 2,000
steps). Then we run the 100,000 step sampling run to generate samples of the joint posterior
distribution.

const MC = CalibrateEmulateSample.MarkovChainMonteCarlo

mcmc = MC.MCMCWrapper(

MC.RWMHSampling(), y_obs, prior, emulator,

)

choose a step size

new_step = MC.optimize_stepsize(

mcmc; init_stepsize = 0.1, N = 2000,

)

Now begin the actual MCMC

chain = MC.sample(

mcmc, 100_000; stepsize = new_step, discard_initial = 2_000,

)

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

5

https://doi.org/10.21105/joss.06372

Figure 5: The joint posterior distribution histogram

A histogram of the samples from the CES algorithm is displayed in Figure 5. We see that the
posterior distribution contains the true value (3.0, 7.0) with high probability.

Research projects using the package
Some research projects that use this codebase, or modifications of it, are

• (Dunbar et al., 2021)
• (Bieli et al., 2022)
• (Hillier, 2022)
• (Howland et al., 2022)
• (Dunbar, Howland, et al., 2022)
• (Mansfield & Sheshadri, 2022)
• (King et al., 2023)

Acknowledgements
We acknowledge contributions from several others who played a role in the evolution of this
package. These include Adeline Hillier, Ignacio Lopez Gomez and Thomas Jackson. The
development of this package was supported by the generosity of Eric and Wendy Schmidt by
recommendation of the Schmidt Futures program, National Science Foundation Grant AGS-
1835860, the Defense Advanced Research Projects Agency (Agreement No. HR00112290030),
the Heising-Simons Foundation, Audi Environmental Foundation, and the Cisco Foundation.

References
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to

numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Bieli, M., Dunbar, O. R. A., Jong, E. K. de, Jaruga, A., Schneider, T., & Bischoff, T. (2022).
An efficient Bayesian approach to learning droplet collision kernels: Proof of concept using

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

6

https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.06372

“Cloudy,” a new n-moment bulk microphysics scheme. Journal of Advances in Modeling
Earth Systems, 14(8), e2022MS002994. https://doi.org/10.1029/2022MS002994

Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T., & Stuart, A. M. (2021). Calibrate,
emulate, sample. Journal of Computational Physics, 424, 109716. https://doi.org/10.
1016/j.jcp.2020.109716

Cotter, S. L., Roberts, G. O., Stuart, A. M., & White, D. (2013). MCMC Methods for
Functions: Modifying Old Algorithms to Make Them Faster. Statistical Science, 28(3),
424–446. https://doi.org/10.1214/13-STS421

Dixit, V. K., & Rackauckas, C. (2022). GlobalSensitivity.jl: Performant and parallel global
sensitivity analysis with julia. Journal of Open Source Software, 7(76), 4561. https:
//doi.org/10.21105/joss.04561

Dunbar, O. R. A., Garbuno-Inigo, A., Schneider, T., & Stuart, A. M. (2021). Calibration
and uncertainty quantification of convective parameters in an idealized GCM. Journal of
Advances in Modeling Earth Systems, 13(9), e2020MS002454. https://doi.org/10.1029/
2020MS002454

Dunbar, O. R. A., Howland, M. F., Schneider, T., & Stuart, A. M. (2022). Ensemble-based
experimental design for targeting data acquisition to inform climate models. Journal of
Advances in Modeling Earth Systems, 14(9), e2022MS002997. https://doi.org/10.1029/
2022MS002997

Dunbar, O. R. A., Lopez-Gomez, I., Garbuno-Iñigo, A. G.-I., Huang, D. Z., Bach, E., & Wu, J.
(2022). EnsembleKalmanProcesses.jl: Derivative-free ensemble-based model calibration.
Journal of Open Source Software, 7 (80), 4869. https://doi.org/10.21105/joss.04869

Fairbrother, J., Nemeth, C., Rischard, M., Brea, J., & Pinder, T. (2022). GaussianProcesses.
Jl: A nonparametric bayes package for the julia language. Journal of Statistical Software,
102, 1–36. https://doi.org/10.18637/jss.v102.i01

Gammal, J. E., Schöneberg, N., Torrado, J., & Fidler, C. (2023). Fast and robust bayesian
inference using gaussian processes with GPry. Journal of Cosmology and Astroparticle
Physics, 2023(10), 021. https://doi.org/10.1088/1475-7516/2023/10/021

Garbuno-Inigo, A., Nüsken, N., & Reich, S. (2020). Affine invariant interacting Langevin
dynamics for Bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3),
1633–1658. https://doi.org/10.1137/19M1304891

Hillier, A. (2022). Supervised calibration and uncertainty quantification of subgrid closure
parameters using ensemble Kalman inversion [Master’s thesis]. Massachusetts Institute of
Technology. Department of Electrical Engineering; Computer Science.

Hoffman, M. D., Gelman, A., & others. (2014). The no-u-turn sampler: Adaptively setting
path lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1), 1593–1623.

Howland, M. F., Dunbar, O. R. A., & Schneider, T. (2022). Parameter uncertainty quantifica-
tion in an idealized GCM with a seasonal cycle. Journal of Advances in Modeling Earth
Systems, 14(3), e2021MS002735. https://doi.org/10.1029/2021MS002735

Huang, D. Z., Huang, J., Reich, S., & Stuart, A. M. (2022). Efficient derivative-free
bayesian inference for large-scale inverse problems. Inverse Problems, 38(12), 125006.
https://doi.org/10.1088/1361-6420/ac99fa

Huggins, B., Li, C., Tobaben, M., Aarnos, M. J., & Acerbi, L. (2023). PyVBMC: Efficient
bayesian inference in python. Journal of Open Source Software, 8(86), 5428. https:
//doi.org/10.21105/joss.05428

Iglesias, M. A., Law, K. J., & Stuart, A. M. (2013). Ensemble kalman methods for inverse
problems. Inverse Problems, 29(4), 045001. https://doi.org/10.1088/0266-5611/29/4/

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

7

https://doi.org/10.1029/2022MS002994
https://doi.org/10.1016/j.jcp.2020.109716
https://doi.org/10.1016/j.jcp.2020.109716
https://doi.org/10.1214/13-STS421
https://doi.org/10.21105/joss.04561
https://doi.org/10.21105/joss.04561
https://doi.org/10.1029/2020MS002454
https://doi.org/10.1029/2020MS002454
https://doi.org/10.1029/2022MS002997
https://doi.org/10.1029/2022MS002997
https://doi.org/10.21105/joss.04869
https://doi.org/10.18637/jss.v102.i01
https://doi.org/10.1088/1475-7516/2023/10/021
https://doi.org/10.1137/19M1304891
https://doi.org/10.1029/2021MS002735
https://doi.org/10.1088/1361-6420/ac99fa
https://doi.org/10.21105/joss.05428
https://doi.org/10.21105/joss.05428
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.21105/joss.06372

045001

King, R. C., Mansfield, L. A., & Sheshadri, A. (2023). Bayesian history matching applied to
the calibration of a gravity wave parameterization [Preprint]. https://doi.org/10.22541/
essoar.170365299.96491153/v1

Liu, F., Huang, X., Chen, Y., & Suykens, J. A. K. (2022). Random features for kernel
approximation: A survey on algorithms, theory, and beyond. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(10), 7128–7148. https://doi.org/10.1109/TPAMI.
2021.3097011

Livingstone, S., & Zanella, G. (2022). The barker proposal: Combining robustness and
efficiency in gradient-based MCMC. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 84(2), 496–523. https://doi.org/10.1111/rssb.12482

Mansfield, L. A., & Sheshadri, A. (2022). Calibration and uncertainty quantification of
a gravity wave parameterization: A case study of the Quasi-Biennial Oscillation in an
intermediate complexity climate model. Journal of Advances in Modeling Earth Systems,
14(11). https://doi.org/10.1029/2022MS003245

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114

Nott, D. J., Ong, V. M.-H., Fan, Y., & Sisson, S. A. (2018). High-Dimensional ABC. In
Handbook of Approximate Bayesian Computation (pp. 211–241). CRC Press. https:
//doi.org/10.1201/9781315117195-8

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.

Rahimi, A., & Recht, B. (2008). Uniform approximation of functions with random bases. 2008
46th Annual Allerton Conference on Communication, Control, and Computing, 555–561.
https://doi.org/10.1109/allerton.2008.4797607

Rahimi, A., Recht, B., & others. (2007). Random features for large-scale kernel
machines. NIPS, 3, 5. https://proceedings.neurips.cc/paper_files/paper/2007/file/
013a006f03dbc5392effeb8f18fda755-Paper.pdf

Sherlock, C., Fearnhead, P., & Roberts, G. O. (2010). The random walk metropolis: Linking
theory and practice through a case study. Statistical Science, 25(2), 172–190. https:
//doi.org/10.1214/10-sts327

Tankhilevich, E., Ish-Horowicz, J., Hameed, T., Roesch, E., Kleijn, I., Stumpf, M. P. H., & He,
F. (2020). GpABC: a Julia package for approximate Bayesian computation with Gaussian
process emulation. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa078

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol.
2). MIT press Cambridge, MA. https://doi.org/10.1142/S0129065704001899

Dunbar et al. (2024). CalibrateEmulateSample.jl: Accelerated Parametric Uncertainty Quantification. Journal of Open Source Software, 9(97),
6372. https://doi.org/10.21105/joss.06372.

8

https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.22541/essoar.170365299.96491153/v1
https://doi.org/10.22541/essoar.170365299.96491153/v1
https://doi.org/10.1109/TPAMI.2021.3097011
https://doi.org/10.1109/TPAMI.2021.3097011
https://doi.org/10.1111/rssb.12482
https://doi.org/10.1029/2022MS003245
https://doi.org/10.1063/1.1699114
https://doi.org/10.1201/9781315117195-8
https://doi.org/10.1201/9781315117195-8
https://doi.org/10.1109/allerton.2008.4797607
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://doi.org/10.1214/10-sts327
https://doi.org/10.1214/10-sts327
https://doi.org/10.1093/bioinformatics/btaa078
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.21105/joss.06372

	Summary
	Statement of need
	State of the field
	A simple example from the code documentation
	Research projects using the package
	Acknowledgements
	References

