
ThermoParser: Streamlined Analysis of
Thermoelectric Properties
Kieran B. Spooner1,2,3, Maud Einhorn2,3, Daniel W. Davies2,3, and David O.
Scanlon1,2,3

1 School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom 2 Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom 3
Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom

DOI: 10.21105/joss.06340

Software
• Review
• Repository
• Archive

Editor: Mojtaba Barzegari
Reviewers:

• @enricgrau
• @fnattino
• @espottesmith

Submitted: 08 January 2024
Published: 25 May 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Thermoelectric materials, which convert heat into electricity, could be an important renewable
energy source to help slow the encroaching climate crisis, not only by displacing fossil fuels,
but by recycling waste heat, which makes up around 50 % of generated energy (Firth et
al., 2019). With the growing computational capacity and development of several codes to
calculate the key properties of thermoelectrics, they have become an increasingly popular
area of computational materials research in recent years. Thermal transport packages include
Phonopy (Togo & Tanaka, 2015), Phono3py (Togo et al., 2015), ShengBTE/ almaBTE (Li
et al., 2014), ALAMODE (Tadano et al., 2014), TDEP (Hellman et al., 2011) and HiPhive
(Eriksson et al., 2019); and electronic transport packages include BoltzTraP (G. K. H. Madsen
& Singh, 2006), BoltzTraP2 (G. K. Madsen et al., 2018), EPW (Noffsinger et al., 2010), EPA
(Samsonidze & Kozinsky, 2018), EPIC STAR (Deng et al., 2020), AMSET (Alex M. Ganose et
al., 2021), Perturbo (Zhou et al., 2021), TOSSPB (Pöhls & Mozharivskyj, 2022) and ElecTra
(Graziosi et al., 2023). While separate packages are required for such different calculations,
this makes data analysis complex, needing to load in different file formats, account for different
data arrangements (e.g. array shapes), and convert to consistent units, even before one begins
analysing anything. ThermoParser deals with these time-consuming and error-prone problems
by loading data from multiple codes into a consistent data format with informative metadata,
and facilitates the post-processing of thermoelectric properties by using this to accurately
calculate and visualise them through an easy-to-use command-line interface (CLI) and a fully
customisable Python package. Some of its utility can be seen by its use in the literature
(sometimes under its former name, ThermoPlotter) (Brlec et al., 2022; Han et al., 2024;
Herring Rodriguez et al., 2023; Kavanagh et al., 2021; Spooner et al., 2021; Willis et al.,
2023).

Statement of Need
To the best of our knowledge no package exists for processing data from the vastly different
sets of calculations needed to study thermoelectrics computationally. While there are several
codes to aid with individual aspects of thermoelectric calculations, such as the inbuilt analysis
sections of Phonopy and AMSET or packages such as Phono3py-Power-Tools (Skelton, 2020)
and sumo (Alex M. Ganose et al., 2018), they are specialised to either the phononic or electronic
side. ThermoParser brings three key novelties to the existing software landscape:

• The automatic parsing of outputs from multiple codes for both electronic and phononic
calculations;

• A data system which is transparent in the origin, arrangement and units of the data,
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customisable, and accessible regardless of Python aptitude;
• Plotting tools for the creation of publication-ready figures through an intuitive Python API,

accessible to Python novices while fully customisable for making complex, information-rich
graphics, with the most common plots also available via a CLI.

To complement these capabilities, there is also a range of ancillary functions which streamline
all parts of the process.

ThermoParser
ThermoParser is a Python package for analysing and plotting thermoelectric properties. The
main dependencies are matplotlib (Hunter, 2007) for plotting, pymatgen (Ong et al., 2013) for
symmetry analysis, numpy for calculations and click for the CLI. The package interfaces with
Phonopy, Phono3py, AMSET and BoltzTraP.

The package is modular, with a separate function for loading from each code, plotting each
graph-type and preparing each axis arrangement, as well as numerous helper functions for
calculating properties, manipulating data, and formatting outputs. Therefore, in order to add
support for a new code, calculated property or plot-type, one needs only create a single function
able to read/write the common format, and perhaps some metadata, and the rest should just
work. Everything loaded into the common format has a meta dictionary, containing all the
metadata needed to understand the data: the code it was loaded from, the shape of the array
(e.g. if the first index is temperature) and the units, as well as any conditions imposed, such
as if the data has been reduced to a particular temperature. All dependent variables are also
loaded by default. A tprc.yaml config file is supplied, which enables the user to automatically
convert units, and update the units as they appear in the metadata and on axis labels. This
data is used by CLI functions provided to retrieve data from files, which verbosely describes
the conditions under which it was measured for maximum transparency.

Plotting simple plots can be done easily via the CLI, but the Python interface is designed
to be accessible to those unfamiliar with Python, with the simplest plots requiring just four
lines of code. More complex plots can be achieved by making full use of the Python API, but
oftentimes still only require adding an extra plot line. In general, raw data is converted to
high-quality plots in four stages:

1. Axes: Choose pre-sized axes suitable for publication or presentation from tp.axes.

2. Load: Use the data.load module to parse outputs of other codes, standardising variable
names, formatting and ensuring consistency across code versions. There is also a module
which efficiently runs BoltzTraP and saves the output.

3. Add: Use the plot module to add plots to the axes. Options exist for scaling data,
multiple plots per set of axes, and other customisation.

4. Save: Use fig.savefig or similar.

The tprc.yaml file allows users to set a range of defaults, including axis labels, tick locators,
style sheets and more. While a gallery is curated to demonstrate all plotting functionality, we
highlight some key examples in Figures 1 and 2.

Figure 1a shows a phonon dispersion with an element-decomposed density of states (DoS)
sharing the y-axis. Different environments for the same atom type can be specified, if desired,
and it is possible to overlay multiple dispersions to assess calculation convergence. Figure 1b
shows the same dispersion with lifetime projected on the colour axis. Data from both Phono3py
and Phonopy is parsed, and ThermoParser internally calculates the mean free path and phonon
lifetime. Several other ways of projecting a range of properties onto a phonon dispersion are
implemented, including the broadened bands plot (tp.plot.frequency.add_wideband), which
is more commonly seen in the literature (Togo et al., 2015). This also demonstrates the utility
of ThermoParser’s consistent data format: as well as Phono3py data, Gruneisen parameter
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data from Phonopy can be projected onto phonon dispersions in the same way, by changing
only which data is loaded and setting quantity='gruneisen' rather than 'lifetime'.

Figure 1: Phonon dispersions for ZnO with a) DoS and b) phonon lifetime projected on the colour axis.

Figure 2 is a waterfall plot of mean free path against frequency overlaying a DoS plot, clearly
showing the relationship between elemental composition and scattering. Scaling the linear-
scaled DoS data to the log-scaled waterfall axes would be time-consuming on a case-by-case
basis, whereas the tp.plot.frequency.add_dos function will autodetect the data range and
rescale appropriately if the scale argument is set to True.

Figure 2: Waterfall plot overlaid on a DoS for BaSnO3.

In the future, ThermoParser could be expanded to include an increased number of analysis
types and supported codes. On top of this, support for uploading experimental data into the
ThermoParser format, including the appropriate metadata, could allow easier comparison of
theoretical and experimental results.
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