The Journal of Open Source Software

pYEQL: A Python interface for water chemistry

Ryan Kingsbury ©1!

1 Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the
Environment, Princeton University, USA

DOI: 10.21105/joss.06295

Software
« Review 7 Summary
= Repository &
« Archive 2 The properties and behavior of aqueous solutions — that is, water containing dissolved minerals

and other solutes — are vital to understanding natural systems and to developing new technolo-
gies for water purification, wastewater treatment, and sustainable industrial processes (Stumm
& Morgan, 1999). pyEQL provides object representations for aqueous solutions, creating a
stable, intuitive, and easy to learn interface for calculating properties of solutions and dissolved

Editor: Lucy Whalley &

Revi :
eviewers solutes. Its purpose is to save researchers time by making a variety of different models accessible
= Qorionarcher through a single interface and by aggregating hundreds of properties and model parameters
= @JacksonBurns into a built-in database.

= @yuxuanzhuang

Submitted: 08 November 2023 Statement of need

Published: 25 March 2024

License Accurately predicting the thermodynamic and transport properties of complex electrolyte

Authors of papers retain copyright ~solutions containing many solutes, especially at moderate to high salt concentrations commonly

and release the work under a encountered in water desalination and resource recovery applications, remains a major scientific

Creative Commons Attribution 4.0 challenge (Rowland & May, 2019). This challenge is compounded by the fact that the best

International License (CC BY 4.0). available models, such as the Pitzer model (May et al., 2011), are difficult to implement on
an as-needed basis and require looking up many parameters. Researchers and practitioners in
fields such as water treatment and desalination, electrochemistry, or environmental engineering
need accurate information about electrolyte solutions to perform their work, but are typically
not specialists in solution chemistry or electrolyte thermodynamics.

Available software such as PHREEQC (Charlton & Parkhurst, 2011), GeoChemist's Workbench
(Aqueous Solutions, 2023), or OLI Studio (Wang et al., 2002) implement numerous electrolyte
models and contain powerful capabilities for specialists. However, they are not highly accessible
for routine use by others, due to a steep learning curve, difficult interoperability with other tools
(such as external transport models), the lack of a freely-available version, and/or limitation
to specific operating systems. Several python interfaces to the open-source PHREEQC software
exist, including IPhreeqC (Parkhurst & Appelo, 2013), phreegpython (https://github.com/
Vitens/phreeqpython), and pyeqion2 (Marcellos et al., 2021). However, these interfaces are
either not object-oriented, poorly documented, and/or only offer access to only a limited
subset of the PHREEQC parameter databases. There are more subtle limitations as well. For
example, phreeqgpython is unable to calculate solution conductivity when used in conjunction
with the PHREEQC pitzer.dat database (the most accurate for high salinity solutions). A
researcher seeking quality data on common bulk properties such as density or viscosity or
solute-specific properties such as diffusion coefficient, transport number, or activity coefficient
is thus left to piece together outputs from disparate models and literature — a time-consuming
and error-prone process.

pYEQL is designed to free researchers from the tedium of identifying and implementing the
relevant models and compiling the required parameters from literature. It defines a python
Solution class from which properties can be easily retrieved. It implements the Pitzer model

Kingsbury. (2024). pyEQL: A Python interface for water chemistry. Journal of Open Source Software, 9(95), 6295. https://doi.org/10.21105/joss. 1
06295.

https://orcid.org/0000-0002-7168-3967
https://doi.org/10.21105/joss.06295
https://github.com/openjournals/joss-reviews/issues/6295
https://github.com/rkingsbury/pyEQL
https://doi.org/10.5281/zenodo.8332915
http://lucydot.github.io
https://orcid.org/0000-0002-2992-9871
https://github.com/orionarcher
https://github.com/JacksonBurns
https://github.com/yuxuanzhuang
https://creativecommons.org/licenses/by/4.0/
https://github.com/Vitens/phreeqpython
https://github.com/Vitens/phreeqpython
https://doi.org/10.21105/joss.06295
https://doi.org/10.21105/joss.06295

SS

The Journal of Open Source Software

(May et al., 2011) for binary salts, with mixing rules (Mistry et al., 2013) for more complex
solutions, and decays gracefully to more approximate models like the Debye-Huckel activity
model (Stumm & Morgan, 1999) when adequate data is not available. The built-in property
database includes Pitzer model parameters (May et al., 2011) for more than 100 salts, diffusion
coefficients (Vanysek, 2011) for more than 100 solutes, and an ever-expanding set of additional
property data that make the best-available models transparently accessible to the end user.

+oyEQL e

Solution
pH lonic Strength Solute Concentrations
Temperature Alkalinity Solute Activities
Volume Hardness Osmotic Pressure
Conductivity Total Dissolved Solids Transport Numbers
Physicochemical Solute Activity, y;
Solute Properties, Solut'e Yolume,vi
Model Parameters SpeCIat!on .
Saturation Indices
Property Database Modeling Engine
{:P = Built-in Ideal @
o JIEMAgOMA | (pitzer) || solution || R

Figure 1: Overview of pyEQL's architecture. Properties such as ionic strength, conductivity, and
concentrations are calculated directly by pyEQL. Modeling engines are used to calculate non-ideal effects
such as activity coefficients, while property database stores necessary parameters. The modular design of
the modeling engines and property database facilitate customization.

Example Use Cases

pyEQL may be useful to scientists and engineers in various fields broadly related to aqueous
solution chemistry. Specific use cases include, but are not limited to:

= Calculating the osmotic pressure of concentrated salt solutions

= Estimating the speciation of complex electrolyte solutions at different pH values

= Calculating the transport number of a specific ion

= Computing bulk solution characteristics such as ionic strength, alkalinity, or total dissolved
solids, given the composition of solutes

= Converting concentrations between different unit systems, e.g. moles per L, weight %,
parts per million

= Looking up properties of individual ionic species, including molecular weight, diffusion
coefficient, ionic, hydrated, and van der Waals radii, etc.

Design Principles

Return the best answer possible

Recognizing that accurate modeling of complex electrolyte solutions can be difficult or even
impossible, pyEQL is designed to return the best answer possible given the data and models

Kingsbury. (2024). pyEQL: A Python interface for water chemistry. Journal of Open Source Software, 9(95), 6295. https://doi.org/10.21105/joss. 2

06295.

https://doi.org/10.21105/joss.06295
https://doi.org/10.21105/joss.06295

The Journal of Open Source Software

available. For example, to calculate the osmotic pressure of a solution, the built-in modeling
engine first attempts to use the Pitzer model, but if parameters are not available, it reverts to a
more approximate formula rather than raising an error. To maintain transparency, log messages
(and where appropriate, warnings) are generated throughout the codebase to document when
assumptions or approximations have to be invoked or when important model parameters are
missing from the database.

Interoperate with other scientific codes

pyEQL is built to be extensible, customizable, and easy to use in conjunction with widely-used
scientific python libraries. Specifically, it makes use of pint (https://github.com/hgrecco/pint)
to provide automatic unit conversions and leverages codes in the Materials Project (Jain et al.,
2013) ecosystem — namely, pymatgen (Ong et al., 2013) for chemical informatics (e.g., molecular
weight, parsing chemical formulae) and maggma (https://github.com/materialsproject/maggma)
for accessing the built-in property database.

Architecture

The Solution class

The primary user-facing object in pyEQL is the Solution class. This class contains constitutive
relationships for calculating most solution properties that depend on composition, such as total
dissolved solids, ionic strength, density, conductivity, and many others (Figure 1). Calculations
that require information about non-idealities (e.g., activity coefficients) are handled by a
“modeling engine” that is stored in Solution as an attribute.

Modeling Engines

Every Solution contains a “modeling engine” which inherits from a base class defined in
pyEQL. Modeling engines provide methods for calculating non-ideal thermodynamic corrections
including solute activity coefficients and molar volumes as well as performing speciation. The
results of these calculations are passed back to Solution where they can be transparently
accessed by the user alongside other properties. This modular design facilitates connecting the
Solution API to multiple modeling backends or software packages. Currently, the available
modeling engines include an ideal solution approximation, a built-in implementation of the
Pitzer model, and the PHREEQC modeling engine.

The Property Database and Solute class

pyEQL also provides Solute, a dataclass that defines a structured schema for solute property
data. The database distributed with pyEQL is a list of serialized Solute objects stored in a
.json file, which is accessed via the maggma Store API. The database used by a particular
Solution instance can be specified by keyword argument when the object is created, which
makes it possible in principle to use customized databases. Furthermore, using the Store API
means that such databases can be stored in any format supported by maggma (e.g., Mongo
Database, .json file, etc.).

Acknowledgements

The author gratefully acknowledges the Persson Research Group at the University of California,
Berkeley, particularly Shyam Dwaraknath, Matthew K. Horton, Donny Winston, Jason Munro,
and Orion Cohen, for their guidance in scientific software development practices. | also ac-
knowledge Hernan Grecco for helpful discussions regarding unit conversion and Kirill Pushkarev,
Dhruv Duseja and Andrew Rosen for recent contributions. The author acknowledges partial

Kingsbury. (2024). pyEQL: A Python interface for water chemistry. Journal of Open Source Software, 9(95), 6295. https://doi.org/10.21105/joss. 3

https://github.com/hgrecco/pint
https://github.com/materialsproject/maggma
https://doi.org/10.21105/joss.06295
https://doi.org/10.21105/joss.06295

The Journal of Open Source Software

financial support from Princeton University, Membrion, Inc., and Bluecell Energy, LLC over
the period 2013-2023.

References

Aqueous Solutions, L. (2023). The geochemist’s workbench, release 17. https://www.gwb.
com/documentation.php

Charlton, S. R., & Parkhurst, D. L. (2011). Modules based on the geochemical model
PHREEQC for use in scripting and programming languages. Computers & Geosciences,
37(10), 1653-1663. https://doi.org/10.1016/j.cageo.2011.02.005

Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter,
D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project:
A materials genome approach to accelerating materials innovation. APL Materials, 1(1).
https://doi.org/10.1063/1.4812323

Marcellos, C. F. C., Silva Junior, G. F. da, Amaral Soares, E. do, Ramos, F., & au2, A. G. B.
J. (2021). PyEqulon: A python package for automatic speciation calculations of aqueous
electrolyte solutions. https://doi.org/10.48550/arXiv.2101.07246

May, P. M., Rowland, D., Hefter, G., & Kénigsberger, E. (2011). A Generic and Updatable
Pitzer Characterization of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal
of Chemical and Engineering Data, 56(12), 5066-5077. https://doi.org/10.1021/je2009329

Mistry, K. H., Hunter, H. A., & Lienhard V, J. H. (2013). Effect of composition and nonideal
solution behavior on desalination calculations for mixed electrolyte solutions with comparison
to seawater. Desalination, 318, 34—47. https://doi.org/10.1016/]j.desal.2013.03.015

Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier,
V. L., Persson, K. A., & Ceder, G. (2013). Python materials genomics (pymatgen): A
robust, open-source python library for materials analysis. Computational Materials Science,
68, 314-319. https://doi.org/10.1016/j.commatsci.2012.10.028

Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC
version 3: A computer program for speciation, batch-reaction, one-dimensional transport,
and inverse geochemical calculations. US Geological Survey. https://doi.org/10.3133/
tm6a43

Rowland, D., & May, P. M. (2019). Progress in Aqueous Solution Modelling: Better Data and
Better Interfaces. Journal of Solution Chemistry, 48(7), 1066-1078. https://doi.org/10.
1007/s10953-019-00871-5

Stumm, W. (Ed.)., & Morgan, J. J. (ed.). (1999). Aquatic Chemistry: Chemical Equilibria
and Rates in Natural Waters (J. L. Schnoor & A. Zehnder, Eds.). Wiley Interscience.
https: / /doi.org/10.1016/S0016-7037(97)81133-7

Vanysek, P. (2011). lonic Conductivity and Diffusion at Infinite Dilution. In W. M. Hamner
(Ed.), CRC Handbook of Chemistry and Physics.

Wang, P., Anderko, A., & Young, R. D. (2002). A speciation-based model for mixed-solvent
electrolyte systems. Fluid Phase Equilibria, 203(1-2), 141-176. https://doi.org/10.1016/
s0378-3812(02)00178-4

Kingsbury. (2024). pyEQL: A Python interface for water chemistry. Journal of Open Source Software, 9(95), 6295. https://doi.org/10.21105/joss. 4

06295.

https://www.gwb.com/documentation.php
https://www.gwb.com/documentation.php
https://doi.org/10.1016/j.cageo.2011.02.005
https://doi.org/10.1063/1.4812323
https://doi.org/10.48550/arXiv.2101.07246
https://doi.org/10.1021/je2009329
https://doi.org/10.1016/j.desal.2013.03.015
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.3133/tm6a43
https://doi.org/10.3133/tm6a43
https://doi.org/10.1007/s10953-019-00871-5
https://doi.org/10.1007/s10953-019-00871-5
https://doi.org/10.1016/S0016-7037(97)81133-7
https://doi.org/10.1016/s0378-3812(02)00178-4
https://doi.org/10.1016/s0378-3812(02)00178-4
https://doi.org/10.21105/joss.06295
https://doi.org/10.21105/joss.06295

	Summary
	Statement of need
	Example Use Cases
	Design Principles
	Return the best answer possible
	Interoperate with other scientific codes

	Architecture
	The Solution class
	Modeling Engines
	The Property Database and Solute class

	Acknowledgements
	References

