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Summary
Uncertainty quantification using Bayesian methods is a growing area of research. Bayesian
model mixing (BMM) is a recent development which combines the predictions from multiple
models such that the fidelity of each model is preserved in the final result. Practical tools
and analysis suites that facilitate such methods are therefore needed. Taweret1 introduces
BMM to existing Bayesian uncertainty quantification efforts. Currently, Taweret contains three
individual Bayesian model mixing techniques, each pertaining to a different type of problem
structure; we encourage the future inclusion of user-developed mixing methods. Taweret’s
first use case is in nuclear physics, but the package has been structured such that it should be
adaptable to any research engaged in model comparison or model mixing.

Statement of need
In physics applications, multiple models with different physics assumptions can be used to
describe an underlying system of interest. Though each model may have similar predictive
accuracy on average, the fidelity of the approximation across a subset of the domain may differ
drastically for each of the models under consideration. In such cases, inference and prediction
based on a single model may be unreliable. One strategy for improving accuracy is to combine,
or “mix”, the predictions from each model using a linear combination or weighted average
with input-dependent weights. This approach is intended to improve reliability of inference
and prediction and properly quantify model uncertainties. When operating under a Bayesian
framework, this technique is referred to as Bayesian model mixing (BMM). In general, model
mixing techniques are designed to combine the individual mean predictions or density estimates
from the 𝐾 models under consideration. For example, mean-mixing techniques predict the
underlying system by

𝐸[𝑌 | 𝑥] =
𝐾
∑
𝑘=1

𝑤𝑘(𝑥) 𝑓𝑘(𝑥),

where 𝐸[𝑌 | 𝑥] denotes the mean of 𝑌 given the vector of input parameters 𝑥, 𝑓𝑘(𝑥) is the
mean prediction under the 𝑘th model ℳ𝑘, and 𝑤𝑘(𝑥) is the corresponding weight function.
The density-mixing approach estimates the underlying predictive density by

𝑝(𝑌0 ∣ 𝑥0, 𝑌 ) =
𝐾
∑
𝑘=1

𝑤𝑘(𝑥0) 𝑝(𝑌0 ∣ 𝑥0, 𝑌 ,ℳ𝑘),

1Taweret is the Egyptian goddess, known as the protector of children and women, whose body is a fusion of
a hippopotamus, lion and crocodile which represent her ferocity. Similarly, Taweret, the package, seeks to fuse
models together to represent observed phenomena.
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where 𝑝(𝑌0 ∣ 𝑥0, 𝑌 ,ℳ𝑘) represents the predictive density of a future observation 𝑌0 with
respect to the 𝑘th model ℳ𝑘 at a new input 𝑥0. In either BMM setup, a key challenge is
defining 𝑤𝑘(𝑥)—the functional relationship between the inputs and the weights.
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x
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Figure 1: Schematic of Bayesian model mixing. Each model has region of parameter space where it has
a high fidelity, but all models are meant to describe the same phenomenon. To obtain a model that
works well for all of parameter space, we combine them using Bayesian model mixing methods.

This work introduces Taweret, a Python package for Bayesian model mixing that includes
three novel approaches for combining models, each of which defines the weight function in a
distinct way (see Table 1 for a comparison of the methods). This package has been developed
as an integral piece of the Bayesian Analysis of Nuclear Dynamics (BAND) collaboration’s
software. BAND is a multi-institutional effort to build a cyber-infrastructure framework for
use in the nuclear physics community (Beyer et al., 2023; Phillips et al., 2021). The software
is designed to lower the barrier for researchers to employ uncertainty quantification in their
data analysis and/or theoretical modeling, and to integrate, as best as possible, with the
community’s current standards concerning coding style (pep8). Bayesian model mixing is one
of BAND’s four central pillars in this framework (the others being emulation, calibration, and
experimental design).

In addition to this need, we are aware of several other fields outside of physics that use
techniques such as model stacking and Bayesian model averaging (BMA) (Fragoso et al.,
2018), e.g., statistics (Yao et al., 2018, 2022), meteorology (Sloughter et al., 2007), and
neuroscience (FitzGerald et al., 2014). It is expected that the Bayesian model mixing methods
implemented in Taweret can also be applied to use cases within these fields. Statisticians have
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developed several versatile BMA/stacking packages, e.g. (Raftery et al., 2022; Vehtari et al.,
2017). However, the only BMM-based package available is SAMBA—a BAND collaboration
effort that was developed for testing BMM methods on a toy model (Semposki et al., 2022a).
Taweret’s increased functionality, user-friendly structure, and diverse selection of mixing
methods make it a marked improvement over SAMBA.

Structure

Overview of methods

Table 1: A summary of the three BMM approaches currently implemented in Taweret. Note that 𝐾 ≥ 2.
Following the method name and the type of mixing model, the Number of inputs column details the
dimensions of the parameter which the mixing weights depend on (e.g., in heavy-ion collisions this is
the centrality bin); the Number of outputs details how many observables the models themselves can
have to compute the model likelihood (e.g., in heavy-ion collisions this can include charge multiplicities,
transverse momentum distributions, transverse momentum fluctuations, etc.); the Number of models
column details how many models the mixing method can combine, and the Weight functions column
describes the available parameterization of how the mixing weights depend on the input parameter.

Method Type
Number
of inputs

Number
of outputs

Number
of models Weight functions

Bivariate linear
mixing

Mean &
Density

1 ≥ 1 2 • Step,
• Sigmoid,
• Asymmetric

2-step
Multivariate

mixing
Mean 1 1 𝐾 Precision

weighting
BART mixing Mean ≥ 1 1 𝐾 Regression trees

Bivariate linear mixing

The full description of this mixing method and several of its applications in relativistic heavy-ion
collision physics can be found in the Ph.D. thesis of D. Liyanage (Liyanage, 2023). The bivariate
linear mixing method can mix two models either using a density-mixing or a mean-mixing
strategy. Currently, this is the only mixing method in Taweret that can also calibrate the
models while mixing. Each physics-based model we consider may have unknown parameters
that have physical meaning. In this context, Bayesian calibration corresponds to the process of
using observational data to learn the values (and more generally, the posterior distributions)
of this these unknown parameters. Most approaches in model mixing and model averaging
use a two-step approach: first, fit individual models using a subset of the data; second, mix
the predictions from each model (obtained from the previous step) using the other subset of
the data to learn the weights. This method, employing simultaneous calibration and mixing,
enables doing both steps at once.

The user may choose among the following mixing functions:

• step: Θ(𝛽0 − 𝑥)

• sigmoid: exp [(𝑥 − 𝛽0)/𝛽1]

• asymmetric 2-step: 𝛼Θ(𝛽0 − 𝑥) + (1 − 𝛼)Θ(𝛽1 − 𝑥).

Here Θ denotes the Heaviside step function, 𝛽0 and 𝛽1 determine the shape of the weight
function and are inferred from the experimental data, and 𝑥 is the model input parameter
(which is expected to be 1-dimensional for this mixing method).
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Multivariate model mixing

Another Bayesian model mixing method incorporated into Taweret was originally published in
(Semposki et al., 2022a), and was the focus of the BMM Python package SAMBA (Semposki
et al., 2022b). It can be described as combining models by weighting each of them by
their precision, defined as the inverse of their respective variances. The posterior predictive
distribution (PPD) of the mixed model is a Gaussian and can be expressed as

ℳ† ∼ 𝒩(𝑓†, 𝑍−1
𝑃 ) ∶ 𝑓† =

1
𝑍𝑃

𝐾
∑
𝑘=1

1
𝜎2
𝑘
𝑓𝑘, 𝑍𝑃 ≡

𝐾
∑
𝑘=1

1
𝜎2
𝑘
,

where 𝒩(𝜇, 𝜎2) is a normal distribution with mean 𝜇 and variance 𝜎2, 𝑍𝑃 is the precision of
the models, and each individual model is assumed to possess a Gaussian form such as

ℳ𝑘 ∼ 𝒩(𝑓𝑘(𝑥), 𝜎2
𝑘(𝑥)).

Here, 𝑓𝑘(𝑥) is the mean of the model 𝑘, and 𝜎2
𝑘(𝑥) its variance, both at input parameter 𝑥.

In this method, the software receives the one-dimensional input space 𝑋, the mean of the 𝑘
models at each point 𝑥 ∈ 𝑋 (hence it is a mean-based mixing procedure), and the variances
of the models at each point 𝑥 ∈ 𝑋. Each model is assumed to have been calibrated prior to
being included in the mix. The ignorance of this mixing method with respect to how each
model was generated allows for any model to be used, including Bayesian Machine Learning
tools such as Gaussian Processes (Semposki et al., 2022a) and Bayesian Neural Networks
(Kronheim et al., 2022).

Model mixing using Bayesian additive regression trees

A third BMM approach implemented in Taweret adopts a mean-mixing strategy which models
the weight functions using Bayesian Additive Regression Trees (BART) conditional on the
mean predictions from a set of 𝐾 models (Yannotty et al., 2023). This approach enables the
weight functions to be adaptively learned using tree bases and avoids the need for user-specified
basis functions (such as a generalized linear model). Formally, the weight functions are defined
by

𝑤𝑘(𝑥) =
𝑚
∑
𝑗=1

𝑔𝑘(𝑥; 𝑇𝑗,𝑀𝑗), for 𝑘 = 1,… ,𝐾

where 𝑔𝑘(𝑥; 𝑇𝑗,𝑀𝑗) defines the 𝑘th output of the 𝑗th tree, 𝑇𝑗, using the associated set of
parameters, 𝑀𝑗. Each weight function is implicitly regularized via a prior to prefer the interval
[0, 1]. Furthermore, the weight functions are not required to sum to one and can take values
outside of the range of [0, 1]. This regularization approach is designed to maintain the flexibility
of the model while also encouraging the weight functions to take values which preserve desired
inferential properties.

This BART-based approach is implemented in C++ with the trees module in Taweret acting
as a Python interface. The C++ back-end implements Bayesian tree models and originates from
the Open Bayesian Trees Project (OpenBT) (Pratola et al., 2023). This module serves as an
example for how existing code bases can be integrated into the Taweret framework.
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Overview of package structure

BaseModel

● evaluate
● log_likelihood_elementwise
● set_prior ● prior

Functions Data

BaseMixer

● evaluate
● evaluate_weights
● predict
● predict_weights
● prior_predict
● set_prior
● train

● map
● posterior
● prior

Functions Data

Figure 2: Diagram depicting the base classes, their methods (functions) and their properties (data).

Taweret uses abstract base classes to ensure compatibility and uniformity of models and mixing
methods. The two base classes are BaseModel and BaseMixer located in the core folder (see
Fig. 1 for a schematic); any model mixing method developed with Taweret is required to
inherit from these. The former represents physics-based models that may include parameters
which need to be determined by Bayesian inference. The latter, BaseMixer, represents a mixing
method used to combine the predictions from the physics-based models using Bayesian model
mixing.

The design philosophy for Taweret is to make it easy to switch between mixing methods
without having to rewrite an analysis script. Thus, the base classes prescribe which functions
need to be present for interoperability between mixing methods, and in particular, the models
being called in the method. The functions required by BaseModel are

• evaluate - gives a point prediction for the model;

• log_likelihood_elementwise - calculates the log-likelihood, reducing along the last
axis of an array if the input array has multiple axes;

• set_prior - sets priors for parameters in the model.

The functions required by BaseMixer are

• evaluate - gives point prediction for the mixed model given a set of parameters;

• evaluate_weights - gives point prediction for the weights given a set of parameters;

• map - returns the maximum a posteriori estimate for the parameters of the mixed model
(which includes both the weights and any model parameters);
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• posterior - returns the chains of the sampled parameters from the mixed model;

• predict - returns the posterior predictive distribution for the mixed model;

• predict_weights - returns the posterior predictive distribution for the model weights;

• prior - returns the prior distributions (typically objects, not arrays);

• prior_predict - returns the prior predictive distribution for the mixed model;

• set_prior - sets the prior distributions for the mixing method;

• train - executes the Bayesian model mixing step.

Following our design philosophy, the general workflow for an analysis using Taweret is described
in Fig. 3. From this, one can see three sources of information are generally required for an
analysis: a selected mixing method, a model set, and training data. Each of these sources are
connected through the training phase, which is where the mixing weights are learned. This
leads into the prediction phase, where final predictions are obtained for the overall system and
the weight functions. This process is summarized in the code snippet below. This workflow is
preserved across the various methods implemented in Taweret and is intended to be maintained
for future mixing methods included in this work.

from mix.mix_method import MixMethod

from models.my_model import MyModel

mixer = MixMethod(models={'model_1': MyModel(...), ...})

mixer.set_prior(...)

mixer.train(...)

mixer.predict(...)

mixer.predict_weights(...)

Extending Taweret with a custom class or model simply requires that you inherit from the
base classes and implement the required functions.

Figure 3: The general workflow for an analysis using Taweret. (Blue) The user must define each of the
𝐾 models as a class inherited from BaseModel. (Green) The user can select an existing mixing method
from Taweret (solid) or contribute a new method (dashed). (Purple) The model is trained using a set
of training data (red), the model set (blue), and the selected mixing method (green). Predictions and
uncertainty quantification follow from the training process.
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Taweret moving forward
There are certainly many improvements that can be made to Taweret. An obvious one is a
generalization of the bivariate linear mixing; this could be the mixing of an arbitrary number
of models at the density level. Complementary to this density mixing method is a stochastic,
mean-mixing method of arbitrary number 𝐾 of models. An extension of the Multivariate
Mixing method to multi-dimensional input and output spaces, correlated models, as well as
calibration during mixing, is anticipated in future releases. Lastly, to facilitate the utilization
of this growing framework, we hope to enable continuous integration routines for contributing
individuals and create docker images that will run Taweret.

Contributions
All authors have contributed to the development of the Taweret framework, while individual
mixing methods were developed by D. Liyanage (bivariate linear mixing), A. Semposki (multi-
variate model mixing), and J. Yanotty (additive regression trees). Ongoing work by K. Ingles
will be included in the next version release of Taweret.
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research.
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