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Summary
We present Jobflow, a domain-agnostic Python package for writing computational workflows
tailored for high-throughput computing applications. With its simple decorator-based approach,
functions and class methods can be transformed into compute jobs that can be stitched
together into complex workflows. Jobflow fully supports dynamic workflows where the full
acyclic graph of compute jobs is not known until runtime, such as compute jobs that launch
other jobs based on the results of previous steps in the workflow. The results of all Jobflow
compute jobs can be easily stored in a variety of filesystem- and cloud-based databases without
the data storage process being part of the underlying workflow logic itself. Jobflow has been
intentionally designed to be fully independent of the choice of workflow manager used to
dispatch the calculations on remote computing resources. At the time of writing, Jobflow
workflows can be executed either locally or across distributed compute environments via an
adapter to the FireWorks package, and Jobflow fully supports the integration of additional
workflow execution adapters in the future.

Statement of Need
The current era of big data and high-performance computing has emphasized the significant
need for robust, flexible, and scalable workflow management solutions that can be used to
efficiently orchestrate scientific calculations (Ben-Nun et al., 2020; Da Silva et al., 2023). To
date, a wide variety of workflow systems have been developed, and it has become clear that
there is no one-size-fits-all solution due to the diverse needs of the computational community
(Al-Saadi et al., 2021; Existing Workflow Systems, 2023). While several popular software
packages in this space have emerged over the last decade, many of them require the user to
tailor their domain-specific code with the underlying workflow management framework closely
in mind. This can be a barrier to entry for many users and puts significant constraints on the

Rosen et al. (2024). Jobflow: Computational Workflows Made Simple. Journal of Open Source Software, 9(93), 5995. https://doi.org/10.21105/
joss.05995.

1

https://orcid.org/0000-0002-0141-7006
https://orcid.org/0009-0008-4099-6144
https://orcid.org/0000-0001-8907-0336
https://orcid.org/0000-0001-5233-3462
https://orcid.org/0000-0001-7346-4568
https://orcid.org/0000-0002-2743-7531
https://orcid.org/0000-0003-0013-575X
https://orcid.org/0000-0002-1182-9098
https://orcid.org/0000-0001-8943-9762
https://orcid.org/0000-0002-1422-1205
https://orcid.org/0000-0002-7212-6310
https://orcid.org/0000-0001-5893-9967
https://orcid.org/0000-0002-4486-3321
https://doi.org/10.21105/joss.05995
https://github.com/openjournals/joss-reviews/issues/5995
https://github.com/materialsproject/jobflow
https://doi.org/10.5281/zenodo.10466868
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/rashatwi
https://github.com/jherasdo
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05995
https://doi.org/10.21105/joss.05995


portability of the underlying workflows.

Here, we introduce Jobflow: a free, open-source Python library that makes it simple to
transform collections of functions into complex workflows that can be executed either locally
or across distributed computing environments. Jobflow has been intentionally designed to act
as middleware between the user’s domain-specific routines that they wish to execute and the
workflow “manager” that ultimately orchestrates the calculations across different computing
environments. Jobflow uses a simple decorator-based syntax that is similar to that of other
recently developed workflow tools (Babuji et al., 2019; Cunningham et al., 2023; Prefect, 2023;
Redun, 2023). This approach makes it possible to turn virtually any function into a Jobflow
Job instance (i.e., a discrete unit of work) with minimal changes to the underlying code itself.

Jobflow has grown out of a need to carry out high-throughput computational materials science
workflows at scale as part of the Materials Project (Jain et al., 2013). As the kinds of
calculations — from ab initio to semi-empirical to those based on machine learning — continue
to evolve and the resulting data streams continue to diversify, it was necessary to rethink how
we managed an increasingly diverse range of computational workflows. Going forward, Jobflow
will become the computational backbone of the Materials Project, which we hope will inspire
additional confidence in the readiness of Jobflow for production-quality scientific computing
applications.

Features and Implementation

Overview
As a simple demonstration, the example below shows how one can construct a simple Flow

(i.e., a graph of interdependent Jobs) composed of two sequential Jobs: the first Job adds
two numbers together (1 + 2), and the second Job multiplies the result by another number
(3 * 3). For simplicity, this Flow is executed locally, but it can be easily dispatched to a
remote computing environment via the selection of a different workflow manager with no
modifications to the underlying function definitions. While trivial, this example demonstrates
the simplicity of the Jobflow syntax and how it can be used to construct complex workflows
from user-defined functions. Note that each Job object is not run when instantiated; rather,
an OutputReference associated with the Job (presented to the user via a Universally Unique
Identifier, or UUID) is returned, which is resolved when the workflow is ultimately executed.

from jobflow import Flow, job, run_locally

@job

def add(a, b):

return a + b

@job

def multiply(a, b):

return a * b

job1 = add(1, 2) # 1 + 2 = 3

job2 = multiply(job1.output, 3) # 3 * 3 = 9

flow = Flow([job1, job2])

responses = run_locally(flow)
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Dynamic Workflows
Beyond the typical acyclic graph of jobs, Jobflow fully supports dynamic workflows where the
precise number of jobs is unknown until runtime. This is a particularly common requirement in
chemistry and materials science workflows and is made possible through the use of a Response

object that controls the flow execution. For instance, the example below is a Flow that will add
two numbers (1 + 2), construct a list of random length containing the prior result (e.g., [3,
3, 3]), and then add an integer to each element of the list ([3 + 10, 3 + 10, 3 + 10]).
The Response(replace=Flow(jobs)) syntax tells Jobflow to replace the current Job with a
(sub)workflow after the Job completes.

from random import randint

from jobflow import Flow, Response, job, run_locally

@job

def add(a, b):

return a + b

@job

def make_list(val):

return [val] * randint(2, 6)

@job

def add_distributed(vals, c):

jobs = [add(val, c) for val in vals]

return Response(replace=Flow(jobs))

job1 = add(1, 2) # 1 + 2 = 3

job2 = make_list(job1.output) # e.g., [3, 3, 3]

job3 = add_distributed(job2.output, 10) # [3 + 10, 3 + 10, 3 + 10]

flow = Flow([job1, job2, job3])

responses = run_locally(flow)

Data Management
Jobflow has first-class support for a variety of data stores through an interface with the maggma

Python package (Maggma, 2023). This makes it possible to easily store the results of workflows
in a manner that is independent of the choice of storage medium and that is entirely decoupled
from the workflow logic itself. Additionally, it is possible within Jobflow to specify multiple
types of data stores for specific Python objects (e.g., primitive types vs. large binary blobs)

Rosen et al. (2024). Jobflow: Computational Workflows Made Simple. Journal of Open Source Software, 9(93), 5995. https://doi.org/10.21105/
joss.05995.

3

https://doi.org/10.21105/joss.05995
https://doi.org/10.21105/joss.05995


created by a given workflow, which is often useful for storing a combination of metadata
(e.g., in a NoSQL database like MongoDB or file-system based store like MontyDB (MontyDB,
2023)) and raw data (e.g., in a cloud object store like Amazon S3 or Microsoft Azure).

Promoting Code Reuse
Unlike most workflow solutions that rely on the use of functional programming, Jobflow fully
supports and encourages the use of compute jobs that involve class-based inheritance to reduce
duplication of code. While subtle, this oft-overlooked feature is particularly useful for scientific
workflows where very similar calculations need to be carried out but with slightly different
parameters or implementation details.

In particular, Jobflow has an abstract class called a Maker that makes it convenient to define
a class that can return a Job to be executed. This makes it possible to take advantage of
the benefits of object-oriented programming while still being able to use the straightforward
Jobflow decorator syntax. The support for classes also avoids the need for each workflow to
accept a large number of keyword arguments in order to give the user freedom to modify the
behavior of any constituent Job in the Flow. Instead, the class variables of the Maker can be
updated directly, and these changes will be reflected in the Job at runtime, as demonstrated
in the example below. Inheriting from the Maker class also enables updating the parameters
of specific Jobs in a Flow through a convenient Flow.update_maker_kwargs(...) function,
which allows for easy customization of workflows even after the Jobs have been defined.

from dataclasses import dataclass

from jobflow import job, Flow, Maker

from jobflow.managers.local import run_locally

@dataclass

class ExponentiateMaker(Maker):

name: str = "Exponentiate"

exponent: int = 2

@job

def make(self, a):

return a**self.exponent

job1 = ExponentiateMaker().make(a=2) # 2**2 = 4

job2 = ExponentiateMaker(exponent=3).make(job1.output) # 4**3 = 64

flow = Flow([job1, job2])

responses = run_locally(flow)

Workflow Execution
One of the major benefits of Jobflow is that it decouples the details related to workflow
execution from the workflow definitions themselves. The simplest way to execute a workflow is
to run it directly on the machine where the workflow is defined using the run_locally(...)

function, as shown in the examples above. This makes it possible to quickly test even complex
workflows without the need to rely on a database or configuring remote resources.

When deploying production calculations, workflows often need to be dispatched to large
supercomputers through a remote execution engine. Jobflow has an interface with the
FireWorks package (Jain et al., 2015) via a one-line command to convert a Flow and its
underlying Job objects into the analogous FireWorks Workflow and Firework objects that
enable execution on high-performance computing machines. The logic behind the Job and
Flow objects are not tied to FireWorks in any direct way, such that the two packages are fully
decoupled.
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Additionally, a remote mode of execution built solely around Jobflow is currently under active
development (Jobflow Remote, 2023). With this approach, workflows can be executed across
multiple “workers” (e.g., a simple computer, a supercomputer, or a cloud-based service) and
managed through a modern command-line interface without relying on an external workflow
execution engine. The forthcoming Jobflow remote mode of execution has been designed such
that no inbound connection from the workers to the database of jobs and results is needed,
thus ensuring data and network security for professional usage.

More generally, it is possible for users to develop custom “adapter” interfaces to their personal
workflow execution engine of choice. As a result, Jobflow fills a niche in the broader workflow
community and can help make the same workflow definition interoperable across multiple
workflow execution engines.

Testing and Documentation
Jobflow has been designed with robustness in mind. The Jobflow codebase has 100% test
coverage at the time of writing and is fully documented. The detailed testing suite, along
with continuous integration pipelines on GitHub, makes it easy for users to write their own
workflows with confidence that they will continue to work as expected for the foreseeable
future. Furthermore, the ability to run Jobflow Flow objects locally makes it simple to write
unit tests when designing a new Python package built around Jobflow without the need for
complex monkey-patching or spinning up a test server.

Usage To-Date
While domain-agnostic, Jobflow has been used in several materials science Python packages to
date, including but not limited to:

• Atomate2 (Atomate2, 2023), Quacc (Rosen, 2023): Libraries of computational chemistry
and materials science workflows.

• NanoParticleTools (NanoParticleTools, 2023): Workflows for Monte Carlo simulations of
nanoparticles.

• Reaction Network (McDermott et al., 2021; Reaction Network, 2023): Workflows for
constructing and analyzing inorganic chemical reaction networks.

• WFacer (WFacer, 2023): Workflows for modeling the statistical thermodynamics of
solids via automated cluster expansion.

Additional Details
Naturally, the summary presented in this article constitutes only a small subset of the features
that Jobflow has to offer. For additional details along with helpful tutorials ranging from basic
applications to examples specifically targeting the computational materials science community,
we refer the reader to the Jobflow documentation. Suggestions, contributions, and bug reports
are always welcome.
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